1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#include "svx/EnhancedCustomShape2d.hxx"
#include <rtl/ustring.hxx>
#include <tools/fract.hxx>
// Makes parser a static resource,
// we're synchronized externally.
// But watch out, the parser might have
// state not visible to this code!
#define BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE
#if defined(VERBOSE) && defined(DBG_UTIL)
#include <typeinfo>
#define BOOST_SPIRIT_DEBUG
#endif
#include <boost/spirit/include/classic_core.hpp>
#if (OSL_DEBUG_LEVEL > 0)
#include <iostream>
#endif
#include <functional>
#include <algorithm>
#include <stack>
#include <math.h> // fabs, sqrt, sin, cos, tan, atan, atan2
using namespace EnhancedCustomShape;
using namespace com::sun::star;
using namespace com::sun::star::drawing;
void EnhancedCustomShape::FillEquationParameter( const EnhancedCustomShapeParameter& rSource, const sal_Int32 nDestPara, EnhancedCustomShapeEquation& rDest )
{
sal_Int32 nValue = 0;
if ( rSource.Value.getValueTypeClass() == uno::TypeClass_DOUBLE )
{
double fValue(0.0);
if ( rSource.Value >>= fValue )
nValue = (sal_Int32)fValue;
}
else
rSource.Value >>= nValue;
switch( rSource.Type )
{
case com::sun::star::drawing::EnhancedCustomShapeParameterType::EQUATION :
{
if ( nValue & 0x40000000 )
{
nValue ^= 0x40000000;
rDest.nOperation |= 0x20000000 << nDestPara; // the bit is indicating that this value has to be adjusted later
}
nValue |= 0x400;
}
break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::ADJUSTMENT : nValue += DFF_Prop_adjustValue; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::BOTTOM : nValue = DFF_Prop_geoBottom; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::RIGHT : nValue = DFF_Prop_geoRight; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::TOP : nValue = DFF_Prop_geoTop; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::LEFT : nValue = DFF_Prop_geoLeft; break;
}
if ( rSource.Type != com::sun::star::drawing::EnhancedCustomShapeParameterType::NORMAL )
rDest.nOperation |= ( 0x2000 << nDestPara );
rDest.nPara[ nDestPara ] = nValue;
}
ExpressionNode::~ExpressionNode()
{}
namespace
{
//////////////////////
//////////////////////
// EXPRESSION NODES
//////////////////////
//////////////////////
class ConstantValueExpression : public ExpressionNode
{
double maValue;
public:
ConstantValueExpression( double rValue ) :
maValue( rValue )
{
}
virtual double operator()() const
{
return maValue;
}
virtual bool isConstant() const
{
return true;
}
virtual ExpressionFunct getType() const
{
return FUNC_CONST;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /* pOptionalArg */, sal_uInt32 /* nFlags */ )
{
EnhancedCustomShapeParameter aRet;
Fraction aFract( maValue );
if ( aFract.GetDenominator() == 1 )
{
aRet.Type = EnhancedCustomShapeParameterType::NORMAL;
aRet.Value <<= (sal_Int32)aFract.GetNumerator();
}
else
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation = 1;
aEquation.nPara[ 0 ] = 1;
aEquation.nPara[ 1 ] = (sal_Int16)aFract.GetNumerator();
aEquation.nPara[ 2 ] = (sal_Int16)aFract.GetDenominator();
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
return aRet;
}
};
class AdjustmentExpression : public ExpressionNode
{
sal_Int32 mnIndex;
const EnhancedCustomShape2d& mrCustoShape;
public:
AdjustmentExpression( const EnhancedCustomShape2d& rCustoShape, sal_Int32 nIndex )
: mnIndex ( nIndex )
, mrCustoShape( rCustoShape )
{
}
virtual double operator()() const
{
OSL_TRACE(" $%d --> %f (angle: %f)", mnIndex, mrCustoShape.GetAdjustValueAsDouble( mnIndex ), 180.0*mrCustoShape.GetAdjustValueAsDouble( mnIndex )/10800000.0);
return mrCustoShape.GetAdjustValueAsDouble( mnIndex );
}
virtual bool isConstant() const
{
return false;
}
virtual ExpressionFunct getType() const
{
return ENUM_FUNC_ADJUSTMENT;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& /*rEquations*/, ExpressionNode* /*pOptionalArg*/, sal_uInt32 /*nFlags*/ )
{
EnhancedCustomShapeParameter aRet;
aRet.Type = EnhancedCustomShapeParameterType::ADJUSTMENT;
aRet.Value <<= mnIndex;
return aRet;
}
};
class EquationExpression : public ExpressionNode
{
sal_Int32 mnIndex;
const EnhancedCustomShape2d& mrCustoShape;
public:
EquationExpression( const EnhancedCustomShape2d& rCustoShape, sal_Int32 nIndex )
: mnIndex ( nIndex )
, mrCustoShape( rCustoShape )
{
}
virtual double operator()() const
{
return mrCustoShape.GetEquationValueAsDouble( mnIndex );
}
virtual bool isConstant() const
{
return false;
}
virtual ExpressionFunct getType() const
{
return ENUM_FUNC_EQUATION;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& /*rEquations*/, ExpressionNode* /*pOptionalArg*/, sal_uInt32 /*nFlags*/ )
{
EnhancedCustomShapeParameter aRet;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= mnIndex | 0x40000000; // the bit is indicating that this equation needs to be adjusted later
return aRet;
}
};
class EnumValueExpression : public ExpressionNode
{
const ExpressionFunct meFunct;
const EnhancedCustomShape2d& mrCustoShape;
public:
EnumValueExpression( const EnhancedCustomShape2d& rCustoShape, const ExpressionFunct eFunct )
: meFunct ( eFunct )
, mrCustoShape ( rCustoShape )
{
}
static double getValue( const EnhancedCustomShape2d& rCustoShape, const ExpressionFunct eFunc )
{
EnhancedCustomShape2d::EnumFunc eF;
switch( eFunc )
{
case ENUM_FUNC_PI : eF = EnhancedCustomShape2d::ENUM_FUNC_PI; break;
case ENUM_FUNC_LEFT : eF = EnhancedCustomShape2d::ENUM_FUNC_LEFT; break;
case ENUM_FUNC_TOP : eF = EnhancedCustomShape2d::ENUM_FUNC_TOP; break;
case ENUM_FUNC_RIGHT : eF = EnhancedCustomShape2d::ENUM_FUNC_RIGHT; break;
case ENUM_FUNC_BOTTOM : eF = EnhancedCustomShape2d::ENUM_FUNC_BOTTOM; break;
case ENUM_FUNC_XSTRETCH : eF = EnhancedCustomShape2d::ENUM_FUNC_XSTRETCH; break;
case ENUM_FUNC_YSTRETCH : eF = EnhancedCustomShape2d::ENUM_FUNC_YSTRETCH; break;
case ENUM_FUNC_HASSTROKE : eF = EnhancedCustomShape2d::ENUM_FUNC_HASSTROKE; break;
case ENUM_FUNC_HASFILL : eF = EnhancedCustomShape2d::ENUM_FUNC_HASFILL; break;
case ENUM_FUNC_WIDTH : eF = EnhancedCustomShape2d::ENUM_FUNC_WIDTH; break;
case ENUM_FUNC_HEIGHT : eF = EnhancedCustomShape2d::ENUM_FUNC_HEIGHT; break;
case ENUM_FUNC_LOGWIDTH : eF = EnhancedCustomShape2d::ENUM_FUNC_LOGWIDTH; break;
case ENUM_FUNC_LOGHEIGHT : eF = EnhancedCustomShape2d::ENUM_FUNC_LOGHEIGHT; break;
default :
return 0.0;
}
return rCustoShape.GetEnumFunc( eF );
}
virtual double operator()() const
{
#if OSL_DEBUG_LEVEL > 1
const char *funcName;
switch (meFunct) {
case ENUM_FUNC_PI : funcName = "pi"; break;
case ENUM_FUNC_LEFT : funcName = "left"; break;
case ENUM_FUNC_TOP : funcName = "top"; break;
case ENUM_FUNC_RIGHT : funcName = "right"; break;
case ENUM_FUNC_BOTTOM : funcName = "bottom"; break;
case ENUM_FUNC_XSTRETCH : funcName = "xstretch"; break;
case ENUM_FUNC_YSTRETCH : funcName = "ystretch"; break;
case ENUM_FUNC_HASSTROKE : funcName = "hasstroke"; break;
case ENUM_FUNC_HASFILL : funcName = "hasfill"; break;
case ENUM_FUNC_WIDTH : funcName = "width"; break;
case ENUM_FUNC_HEIGHT : funcName = "height"; break;
case ENUM_FUNC_LOGWIDTH : funcName = "logwidth"; break;
case ENUM_FUNC_LOGHEIGHT : funcName = "logheight"; break;
default: funcName = "???"; break;
}
OSL_TRACE(" %s --> %f (angle: %f)", funcName, getValue( mrCustoShape, meFunct ), 180.0*getValue( mrCustoShape, meFunct )/10800000.0);
#endif
return getValue( mrCustoShape, meFunct );
}
virtual bool isConstant() const
{
return false;
}
virtual ExpressionFunct getType() const
{
return meFunct;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /*pOptionalArg*/, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
sal_Int32 nDummy = 1;
aRet.Value <<= nDummy;
switch( meFunct )
{
case ENUM_FUNC_WIDTH : // TODO: do not use this as constant value
case ENUM_FUNC_HEIGHT :
case ENUM_FUNC_LOGWIDTH :
case ENUM_FUNC_LOGHEIGHT :
case ENUM_FUNC_PI :
{
ConstantValueExpression aConstantValue( getValue( mrCustoShape, meFunct ) );
aRet = aConstantValue.fillNode( rEquations, NULL, nFlags );
}
break;
case ENUM_FUNC_LEFT : aRet.Type = EnhancedCustomShapeParameterType::LEFT; break;
case ENUM_FUNC_TOP : aRet.Type = EnhancedCustomShapeParameterType::TOP; break;
case ENUM_FUNC_RIGHT : aRet.Type = EnhancedCustomShapeParameterType::RIGHT; break;
case ENUM_FUNC_BOTTOM : aRet.Type = EnhancedCustomShapeParameterType::BOTTOM; break;
// not implemented so far
case ENUM_FUNC_XSTRETCH :
case ENUM_FUNC_YSTRETCH :
case ENUM_FUNC_HASSTROKE :
case ENUM_FUNC_HASFILL : aRet.Type = EnhancedCustomShapeParameterType::NORMAL; break;
default:
break;
}
return aRet;
}
};
/** ExpressionNode implementation for unary
function over one ExpressionNode
*/
class UnaryFunctionExpression : public ExpressionNode
{
const ExpressionFunct meFunct;
ExpressionNodeSharedPtr mpArg;
public:
UnaryFunctionExpression( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rArg ) :
meFunct( eFunct ),
mpArg( rArg )
{
}
static double getValue( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rArg )
{
double fRet = 0;
switch( eFunct )
{
case UNARY_FUNC_ABS : fRet = fabs( (*rArg)() ); break;
case UNARY_FUNC_SQRT: fRet = sqrt( (*rArg)() ); break;
case UNARY_FUNC_SIN : fRet = sin( (*rArg)() ); break;
case UNARY_FUNC_COS : fRet = cos( (*rArg)() ); break;
case UNARY_FUNC_TAN : fRet = tan( (*rArg)() ); break;
case UNARY_FUNC_ATAN: fRet = atan( (*rArg)() ); break;
case UNARY_FUNC_NEG : fRet = ::std::negate<double>()( (*rArg)() ); break;
default:
break;
}
return fRet;
}
virtual double operator()() const
{
return getValue( meFunct, mpArg );
}
virtual bool isConstant() const
{
return mpArg->isConstant();
}
virtual ExpressionFunct getType() const
{
return meFunct;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* pOptionalArg, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
switch( meFunct )
{
case UNARY_FUNC_ABS :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 3;
FillEquationParameter( mpArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_SQRT:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 13;
FillEquationParameter( mpArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_SIN :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 9;
if ( pOptionalArg )
FillEquationParameter( pOptionalArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
else
aEquation.nPara[ 0 ] = 1;
EnhancedCustomShapeParameter aSource( mpArg->fillNode( rEquations, NULL, nFlags | EXPRESSION_FLAG_SUMANGLE_MODE ) );
if ( aSource.Type == EnhancedCustomShapeParameterType::NORMAL )
{ // sumangle needed :-(
EnhancedCustomShapeEquation _aEquation;
_aEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( aSource, 1, _aEquation );
aSource.Type = EnhancedCustomShapeParameterType::EQUATION;
aSource.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( _aEquation );
}
FillEquationParameter( aSource, 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_COS :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 10;
if ( pOptionalArg )
FillEquationParameter( pOptionalArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
else
aEquation.nPara[ 0 ] = 1;
EnhancedCustomShapeParameter aSource( mpArg->fillNode( rEquations, NULL, nFlags | EXPRESSION_FLAG_SUMANGLE_MODE ) );
if ( aSource.Type == EnhancedCustomShapeParameterType::NORMAL )
{ // sumangle needed :-(
EnhancedCustomShapeEquation aTmpEquation;
aTmpEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( aSource, 1, aTmpEquation );
aSource.Type = EnhancedCustomShapeParameterType::EQUATION;
aSource.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aTmpEquation );
}
FillEquationParameter( aSource, 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_TAN :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 16;
if ( pOptionalArg )
FillEquationParameter( pOptionalArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
else
aEquation.nPara[ 0 ] = 1;
EnhancedCustomShapeParameter aSource( mpArg->fillNode( rEquations, NULL, nFlags | EXPRESSION_FLAG_SUMANGLE_MODE ) );
if ( aSource.Type == EnhancedCustomShapeParameterType::NORMAL )
{ // sumangle needed :-(
EnhancedCustomShapeEquation aTmpEquation;
aTmpEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( aSource, 1, aTmpEquation );
aSource.Type = EnhancedCustomShapeParameterType::EQUATION;
aSource.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aTmpEquation );
}
FillEquationParameter( aSource, 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_ATAN:
{
// TODO:
aRet.Type = EnhancedCustomShapeParameterType::NORMAL;
}
break;
case UNARY_FUNC_NEG:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 1;
aEquation.nPara[ 1 ] = -1;
aEquation.nPara[ 2 ] = 1;
FillEquationParameter( mpArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
default:
break;
}
return aRet;
}
};
/** ExpressionNode implementation for unary
function over two ExpressionNodes
*/
class BinaryFunctionExpression : public ExpressionNode
{
const ExpressionFunct meFunct;
ExpressionNodeSharedPtr mpFirstArg;
ExpressionNodeSharedPtr mpSecondArg;
public:
BinaryFunctionExpression( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rFirstArg, const ExpressionNodeSharedPtr& rSecondArg ) :
meFunct( eFunct ),
mpFirstArg( rFirstArg ),
mpSecondArg( rSecondArg )
{
}
static double getValue( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rFirstArg, const ExpressionNodeSharedPtr& rSecondArg )
{
double fRet = 0;
switch( eFunct )
{
case BINARY_FUNC_PLUS : fRet = (*rFirstArg)() + (*rSecondArg)(); break;
case BINARY_FUNC_MINUS: fRet = (*rFirstArg)() - (*rSecondArg)(); break;
case BINARY_FUNC_MUL : fRet = (*rFirstArg)() * (*rSecondArg)(); break;
case BINARY_FUNC_DIV : fRet = (*rFirstArg)() / (*rSecondArg)(); break;
case BINARY_FUNC_MIN : fRet = ::std::min( (*rFirstArg)(), (*rSecondArg)() ); break;
case BINARY_FUNC_MAX : fRet = ::std::max( (*rFirstArg)(), (*rSecondArg)() ); break;
case BINARY_FUNC_ATAN2: fRet = atan2( (*rFirstArg)(), (*rSecondArg)() ); break;
default:
break;
}
return fRet;
}
virtual double operator()() const
{
return getValue( meFunct, mpFirstArg, mpSecondArg );
}
virtual bool isConstant() const
{
return mpFirstArg->isConstant() && mpSecondArg->isConstant();
}
virtual ExpressionFunct getType() const
{
return meFunct;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /*pOptionalArg*/, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
switch( meFunct )
{
case BINARY_FUNC_PLUS :
{
if ( nFlags & EXPRESSION_FLAG_SUMANGLE_MODE )
{
if ( mpFirstArg->getType() == ENUM_FUNC_ADJUSTMENT )
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
else if ( mpSecondArg->getType() == ENUM_FUNC_ADJUSTMENT )
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
else
{
EnhancedCustomShapeEquation aSumangle1;
aSumangle1.nOperation |= 0xe; // sumangle
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags &~EXPRESSION_FLAG_SUMANGLE_MODE ), 1, aSumangle1 );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aSumangle1 );
EnhancedCustomShapeEquation aSumangle2;
aSumangle2.nOperation |= 0xe; // sumangle
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags &~EXPRESSION_FLAG_SUMANGLE_MODE ), 1, aSumangle2 );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aSumangle2 );
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0;
aEquation.nPara[ 0 ] = ( rEquations.size() - 2 ) | 0x400;
aEquation.nPara[ 1 ] = ( rEquations.size() - 1 ) | 0x400;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
}
else
{
sal_Bool bFirstIsEmpty = mpFirstArg->isConstant() && ( (*mpFirstArg)() == 0 );
sal_Bool bSecondIsEmpty = mpSecondArg->isConstant() && ( (*mpSecondArg)() == 0 );
if ( bFirstIsEmpty )
aRet = mpSecondArg->fillNode( rEquations, NULL, nFlags );
else if ( bSecondIsEmpty )
aRet = mpFirstArg->fillNode( rEquations, NULL, nFlags );
else
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
}
}
break;
case BINARY_FUNC_MINUS:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 2, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_MUL :
{
// in the dest. format the cos function is using integer as result :-(
// so we can't use the generic algorithm
if ( ( mpFirstArg->getType() == UNARY_FUNC_SIN ) || ( mpFirstArg->getType() == UNARY_FUNC_COS ) || ( mpFirstArg->getType() == UNARY_FUNC_TAN ) )
aRet = mpFirstArg->fillNode( rEquations, mpSecondArg.get(), nFlags );
else if ( ( mpSecondArg->getType() == UNARY_FUNC_SIN ) || ( mpSecondArg->getType() == UNARY_FUNC_COS ) || ( mpSecondArg->getType() == UNARY_FUNC_TAN ) )
aRet = mpSecondArg->fillNode( rEquations, mpFirstArg.get(), nFlags );
else
{
if ( mpFirstArg->isConstant() && (*mpFirstArg)() == 1 )
aRet = mpSecondArg->fillNode( rEquations, NULL, nFlags );
else if ( mpSecondArg->isConstant() && (*mpSecondArg)() == 1 )
aRet = mpFirstArg->fillNode( rEquations, NULL, nFlags );
else if ( ( mpFirstArg->getType() == BINARY_FUNC_DIV ) // don't care of (pi/180)
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpFirstArg.get())->mpFirstArg.get())->getType() == ENUM_FUNC_PI )
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpFirstArg.get())->mpSecondArg.get())->getType() == FUNC_CONST ) )
{
aRet = mpSecondArg->fillNode( rEquations, NULL, nFlags );
}
else if ( ( mpSecondArg->getType() == BINARY_FUNC_DIV ) // don't care of (pi/180)
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpSecondArg.get())->mpFirstArg.get())->getType() == ENUM_FUNC_PI )
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpSecondArg.get())->mpSecondArg.get())->getType() == FUNC_CONST ) )
{
aRet = mpFirstArg->fillNode( rEquations, NULL, nFlags );
}
else
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 1;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aEquation.nPara[ 2 ] = 1;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
}
}
break;
case BINARY_FUNC_DIV :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 1;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aEquation.nPara[ 1 ] = 1;
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 2, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_MIN :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 4;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_MAX :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 5;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_ATAN2:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 8;
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
default:
break;
}
return aRet;
}
};
class IfExpression : public ExpressionNode
{
ExpressionNodeSharedPtr mpFirstArg;
ExpressionNodeSharedPtr mpSecondArg;
ExpressionNodeSharedPtr mpThirdArg;
public:
IfExpression( const ExpressionNodeSharedPtr& rFirstArg,
const ExpressionNodeSharedPtr& rSecondArg,
const ExpressionNodeSharedPtr& rThirdArg ) :
mpFirstArg( rFirstArg ),
mpSecondArg( rSecondArg ),
mpThirdArg( rThirdArg )
{
}
virtual bool isConstant() const
{
return
mpFirstArg->isConstant() &&
mpSecondArg->isConstant() &&
mpThirdArg->isConstant();
}
virtual double operator()() const
{
return (*mpFirstArg)() > 0 ? (*mpSecondArg)() : (*mpThirdArg)();
}
virtual ExpressionFunct getType() const
{
return TERNARY_FUNC_IF;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /*pOptionalArg*/, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 6;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
FillEquationParameter( mpThirdArg->fillNode( rEquations, NULL, nFlags ), 2, aEquation );
rEquations.push_back( aEquation );
}
return aRet;
}
};
////////////////////////
////////////////////////
// FUNCTION PARSER
////////////////////////
////////////////////////
typedef const sal_Char* StringIteratorT;
struct ParserContext
{
typedef ::std::stack< ExpressionNodeSharedPtr > OperandStack;
// stores a stack of not-yet-evaluated operands. This is used
// by the operators (i.e. '+', '*', 'sin' etc.) to pop their
// arguments from. If all arguments to an operator are constant,
// the operator pushes a precalculated result on the stack, and
// a composite ExpressionNode otherwise.
OperandStack maOperandStack;
const EnhancedCustomShape2d* mpCustoShape;
};
typedef ::boost::shared_ptr< ParserContext > ParserContextSharedPtr;
/** Generate apriori constant value
*/
class ConstantFunctor
{
const double mnValue;
ParserContextSharedPtr mpContext;
public:
ConstantFunctor( double rValue, const ParserContextSharedPtr& rContext ) :
mnValue( rValue ),
mpContext( rContext )
{
}
void operator()( StringIteratorT /*rFirst*/, StringIteratorT /*rSecond*/ ) const
{
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( mnValue ) ) );
}
};
/** Generate parse-dependent-but-then-constant value
*/
class DoubleConstantFunctor
{
ParserContextSharedPtr mpContext;
public:
DoubleConstantFunctor( const ParserContextSharedPtr& rContext ) :
mpContext( rContext )
{
}
void operator()( double n ) const
{
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( n ) ) );
}
};
class EnumFunctor
{
const ExpressionFunct meFunct;
double mnValue;
ParserContextSharedPtr mpContext;
public:
EnumFunctor( const ExpressionFunct eFunct, const ParserContextSharedPtr& rContext )
: meFunct( eFunct )
, mnValue( 0 )
, mpContext( rContext )
{
}
void operator()( StringIteratorT rFirst, StringIteratorT rSecond ) const
{
/*double nVal = mnValue;*/
switch( meFunct )
{
case ENUM_FUNC_ADJUSTMENT :
{
rtl::OUString aVal( rFirst + 1, rSecond - rFirst, RTL_TEXTENCODING_UTF8 );
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new AdjustmentExpression( *mpContext->mpCustoShape, aVal.toInt32() ) ) );
}
break;
case ENUM_FUNC_EQUATION :
{
rtl::OUString aVal( rFirst + 1, rSecond - rFirst, RTL_TEXTENCODING_UTF8 );
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new EquationExpression( *mpContext->mpCustoShape, aVal.toInt32() ) ) );
}
break;
default:
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new EnumValueExpression( *mpContext->mpCustoShape, meFunct ) ) );
}
}
};
class UnaryFunctionFunctor
{
const ExpressionFunct meFunct;
ParserContextSharedPtr mpContext;
public :
UnaryFunctionFunctor( const ExpressionFunct eFunct, const ParserContextSharedPtr& rContext ) :
meFunct( eFunct ),
mpContext( rContext )
{
}
void operator()( StringIteratorT, StringIteratorT ) const
{
ParserContext::OperandStack& rNodeStack( mpContext->maOperandStack );
if( rNodeStack.size() < 1 )
throw ParseError( "Not enough arguments for unary operator" );
// retrieve arguments
ExpressionNodeSharedPtr pArg( rNodeStack.top() );
rNodeStack.pop();
if( pArg->isConstant() ) // check for constness
rNodeStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( UnaryFunctionExpression::getValue( meFunct, pArg ) ) ) );
else // push complex node, that calcs the value on demand
rNodeStack.push( ExpressionNodeSharedPtr( new UnaryFunctionExpression( meFunct, pArg ) ) );
}
};
/** Implements a binary function over two ExpressionNodes
@tpl Generator
Generator functor, to generate an ExpressionNode of
appropriate type
*/
class BinaryFunctionFunctor
{
const ExpressionFunct meFunct;
ParserContextSharedPtr mpContext;
public:
BinaryFunctionFunctor( const ExpressionFunct eFunct, const ParserContextSharedPtr& rContext ) :
meFunct( eFunct ),
mpContext( rContext )
{
}
void operator()( StringIteratorT, StringIteratorT ) const
{
ParserContext::OperandStack& rNodeStack( mpContext->maOperandStack );
if( rNodeStack.size() < 2 )
throw ParseError( "Not enough arguments for binary operator" );
// retrieve arguments
ExpressionNodeSharedPtr pSecondArg( rNodeStack.top() );
rNodeStack.pop();
ExpressionNodeSharedPtr pFirstArg( rNodeStack.top() );
rNodeStack.pop();
// create combined ExpressionNode
ExpressionNodeSharedPtr pNode = ExpressionNodeSharedPtr( new BinaryFunctionExpression( meFunct, pFirstArg, pSecondArg ) );
// check for constness
if( pFirstArg->isConstant() && pSecondArg->isConstant() ) // call the operator() at pNode, store result in constant value ExpressionNode.
rNodeStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( (*pNode)() ) ) );
else // push complex node, that calcs the value on demand
rNodeStack.push( pNode );
}
};
class IfFunctor
{
ParserContextSharedPtr mpContext;
public :
IfFunctor( const ParserContextSharedPtr& rContext ) :
mpContext( rContext )
{
}
void operator()( StringIteratorT, StringIteratorT ) const
{
ParserContext::OperandStack& rNodeStack( mpContext->maOperandStack );
if( rNodeStack.size() < 3 )
throw ParseError( "Not enough arguments for ternary operator" );
// retrieve arguments
ExpressionNodeSharedPtr pThirdArg( rNodeStack.top() );
rNodeStack.pop();
ExpressionNodeSharedPtr pSecondArg( rNodeStack.top() );
rNodeStack.pop();
ExpressionNodeSharedPtr pFirstArg( rNodeStack.top() );
rNodeStack.pop();
// create combined ExpressionNode
ExpressionNodeSharedPtr pNode( new IfExpression( pFirstArg, pSecondArg, pThirdArg ) );
// check for constness
if( pFirstArg->isConstant() && pSecondArg->isConstant() && pThirdArg->isConstant() )
rNodeStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( (*pNode)() ) ) ); // call the operator() at pNode, store result in constant value ExpressionNode.
else
rNodeStack.push( pNode ); // push complex node, that calcs the value on demand
}
};
// Workaround for MSVC compiler anomaly (stack trashing)
//
// The default ureal_parser_policies implementation of parse_exp
// triggers a really weird error in MSVC7 (Version 13.00.9466), in
// that the real_parser_impl::parse_main() call of parse_exp()
// overwrites the frame pointer _on the stack_ (EBP of the calling
// function gets overwritten while lying on the stack).
//
// For the time being, our parser thus can only read the 1.0E10
// notation, not the 1.0e10 one.
//
// TODO(F1): Also handle the 1.0e10 case here.
template< typename T > struct custom_real_parser_policies : public ::boost::spirit::ureal_parser_policies<T>
{
template< typename ScannerT >
static typename ::boost::spirit::parser_result< ::boost::spirit::chlit<>, ScannerT >::type
parse_exp(ScannerT& scan)
{
// as_lower_d somehow breaks MSVC7
return ::boost::spirit::ch_p('E').parse(scan);
}
};
/* This class implements the following grammar (more or
less literally written down below, only slightly
obfuscated by the parser actions):
identifier = '$'|'pi'|'e'|'X'|'Y'|'Width'|'Height'
function = 'abs'|'sqrt'|'sin'|'cos'|'tan'|'atan'|'acos'|'asin'|'exp'|'log'
basic_expression =
number |
identifier |
function '(' additive_expression ')' |
'(' additive_expression ')'
unary_expression =
'-' basic_expression |
basic_expression
multiplicative_expression =
unary_expression ( ( '*' unary_expression )* |
( '/' unary_expression )* )
additive_expression =
multiplicative_expression ( ( '+' multiplicative_expression )* |
( '-' multiplicative_expression )* )
*/
class ExpressionGrammar : public ::boost::spirit::grammar< ExpressionGrammar >
{
public:
/** Create an arithmetic expression grammar
@param rParserContext
Contains context info for the parser
*/
ExpressionGrammar( const ParserContextSharedPtr& rParserContext ) :
mpParserContext( rParserContext )
{
}
template< typename ScannerT > class definition
{
public:
// grammar definition
definition( const ExpressionGrammar& self )
{
using ::boost::spirit::str_p;
using ::boost::spirit::range_p;
using ::boost::spirit::lexeme_d;
using ::boost::spirit::real_parser;
using ::boost::spirit::chseq_p;
identifier =
str_p( "pi" )[ EnumFunctor(ENUM_FUNC_PI, self.getContext() ) ]
| str_p( "left" )[ EnumFunctor(ENUM_FUNC_LEFT, self.getContext() ) ]
| str_p( "top" )[ EnumFunctor(ENUM_FUNC_TOP, self.getContext() ) ]
| str_p( "right" )[ EnumFunctor(ENUM_FUNC_RIGHT, self.getContext() ) ]
| str_p( "bottom" )[ EnumFunctor(ENUM_FUNC_BOTTOM, self.getContext() ) ]
| str_p( "xstretch" )[ EnumFunctor(ENUM_FUNC_XSTRETCH, self.getContext() ) ]
| str_p( "ystretch" )[ EnumFunctor(ENUM_FUNC_YSTRETCH, self.getContext() ) ]
| str_p( "hasstroke" )[ EnumFunctor(ENUM_FUNC_HASSTROKE, self.getContext() ) ]
| str_p( "hasfill" )[ EnumFunctor(ENUM_FUNC_HASFILL, self.getContext() ) ]
| str_p( "width" )[ EnumFunctor(ENUM_FUNC_WIDTH, self.getContext() ) ]
| str_p( "height" )[ EnumFunctor(ENUM_FUNC_HEIGHT, self.getContext() ) ]
| str_p( "logwidth" )[ EnumFunctor(ENUM_FUNC_LOGWIDTH, self.getContext() ) ]
| str_p( "logheight" )[ EnumFunctor(ENUM_FUNC_LOGHEIGHT, self.getContext() ) ]
;
unaryFunction =
(str_p( "abs" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_ABS, self.getContext()) ]
| (str_p( "sqrt" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_SQRT, self.getContext()) ]
| (str_p( "sin" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_SIN, self.getContext()) ]
| (str_p( "cos" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_COS, self.getContext()) ]
| (str_p( "tan" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_TAN, self.getContext()) ]
| (str_p( "atan" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_ATAN, self.getContext()) ]
;
binaryFunction =
(str_p( "min" ) >> '(' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ BinaryFunctionFunctor( BINARY_FUNC_MIN, self.getContext()) ]
| (str_p( "max" ) >> '(' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ BinaryFunctionFunctor( BINARY_FUNC_MAX, self.getContext()) ]
| (str_p( "atan2") >> '(' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ BinaryFunctionFunctor( BINARY_FUNC_ATAN2,self.getContext()) ]
;
ternaryFunction =
(str_p( "if" ) >> '(' >> additiveExpression >> ',' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ IfFunctor( self.getContext() ) ]
;
funcRef_decl =
lexeme_d[ +( range_p('a','z') | range_p('A','Z') | range_p('0','9') ) ];
functionReference =
(str_p( "?" ) >> funcRef_decl )[ EnumFunctor( ENUM_FUNC_EQUATION, self.getContext() ) ];
modRef_decl =
lexeme_d[ +( range_p('0','9') ) ];
modifierReference =
(str_p( "$" ) >> modRef_decl )[ EnumFunctor( ENUM_FUNC_ADJUSTMENT, self.getContext() ) ];
basicExpression =
real_parser<double, custom_real_parser_policies<double> >()[ DoubleConstantFunctor(self.getContext()) ]
| identifier
| functionReference
| modifierReference
| unaryFunction
| binaryFunction
| ternaryFunction
| '(' >> additiveExpression >> ')'
;
unaryExpression =
('-' >> basicExpression)[ UnaryFunctionFunctor( UNARY_FUNC_NEG, self.getContext()) ]
| basicExpression
;
multiplicativeExpression =
unaryExpression
>> *( ('*' >> unaryExpression)[ BinaryFunctionFunctor( BINARY_FUNC_MUL, self.getContext()) ]
| ('/' >> unaryExpression)[ BinaryFunctionFunctor( BINARY_FUNC_DIV, self.getContext()) ]
)
;
additiveExpression =
multiplicativeExpression
>> *( ('+' >> multiplicativeExpression)[ BinaryFunctionFunctor( BINARY_FUNC_PLUS, self.getContext()) ]
| ('-' >> multiplicativeExpression)[ BinaryFunctionFunctor( BINARY_FUNC_MINUS, self.getContext()) ]
)
;
BOOST_SPIRIT_DEBUG_RULE(additiveExpression);
BOOST_SPIRIT_DEBUG_RULE(multiplicativeExpression);
BOOST_SPIRIT_DEBUG_RULE(unaryExpression);
BOOST_SPIRIT_DEBUG_RULE(basicExpression);
BOOST_SPIRIT_DEBUG_RULE(unaryFunction);
BOOST_SPIRIT_DEBUG_RULE(binaryFunction);
BOOST_SPIRIT_DEBUG_RULE(ternaryFunction);
BOOST_SPIRIT_DEBUG_RULE(identifier);
}
const ::boost::spirit::rule< ScannerT >& start() const
{
return additiveExpression;
}
private:
// the constituents of the Spirit arithmetic expression grammar.
// For the sake of readability, without 'ma' prefix.
::boost::spirit::rule< ScannerT > additiveExpression;
::boost::spirit::rule< ScannerT > multiplicativeExpression;
::boost::spirit::rule< ScannerT > unaryExpression;
::boost::spirit::rule< ScannerT > basicExpression;
::boost::spirit::rule< ScannerT > unaryFunction;
::boost::spirit::rule< ScannerT > binaryFunction;
::boost::spirit::rule< ScannerT > ternaryFunction;
::boost::spirit::rule< ScannerT > funcRef_decl;
::boost::spirit::rule< ScannerT > functionReference;
::boost::spirit::rule< ScannerT > modRef_decl;
::boost::spirit::rule< ScannerT > modifierReference;
::boost::spirit::rule< ScannerT > identifier;
};
const ParserContextSharedPtr& getContext() const
{
return mpParserContext;
}
private:
ParserContextSharedPtr mpParserContext; // might get modified during parsing
};
#ifdef BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE
const ParserContextSharedPtr& getParserContext()
{
static ParserContextSharedPtr lcl_parserContext( new ParserContext() );
// clear node stack (since we reuse the static object, that's
// the whole point here)
while( !lcl_parserContext->maOperandStack.empty() )
lcl_parserContext->maOperandStack.pop();
return lcl_parserContext;
}
#endif
}
namespace EnhancedCustomShape {
ExpressionNodeSharedPtr FunctionParser::parseFunction( const ::rtl::OUString& rFunction, const EnhancedCustomShape2d& rCustoShape )
{
// TODO(Q1): Check if a combination of the RTL_UNICODETOTEXT_FLAGS_*
// gives better conversion robustness here (we might want to map space
// etc. to ASCII space here)
const ::rtl::OString& rAsciiFunction(
rtl::OUStringToOString( rFunction, RTL_TEXTENCODING_ASCII_US ) );
StringIteratorT aStart( rAsciiFunction.getStr() );
StringIteratorT aEnd( rAsciiFunction.getStr()+rAsciiFunction.getLength() );
ParserContextSharedPtr pContext;
#ifdef BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE
// static parser context, because the actual
// Spirit parser is also a static object
pContext = getParserContext();
#else
pContext.reset( new ParserContext() );
#endif
pContext->mpCustoShape = &rCustoShape;
ExpressionGrammar aExpressionGrammer( pContext );
const ::boost::spirit::parse_info<StringIteratorT> aParseInfo(
::boost::spirit::parse( aStart,
aEnd,
aExpressionGrammer >> ::boost::spirit::end_p,
::boost::spirit::space_p ) );
OSL_DEBUG_ONLY(::std::cout.flush()); // needed to keep stdout and cout in sync
// input fully congested by the parser?
if( !aParseInfo.full )
throw ParseError( "EnhancedCustomShapeFunctionParser::parseFunction(): string not fully parseable" );
// parser's state stack now must contain exactly _one_ ExpressionNode,
// which represents our formula.
if( pContext->maOperandStack.size() != 1 )
throw ParseError( "EnhancedCustomShapeFunctionParser::parseFunction(): incomplete or empty expression" );
return pContext->maOperandStack.top();
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|