1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#include <vcl/pngread.hxx>
#include <cmath>
#include <rtl/crc.h>
#include <rtl/memory.h>
#include <rtl/alloc.h>
#include <tools/zcodec.hxx>
#include <tools/stream.hxx>
#include <vcl/bmpacc.hxx>
#include <vcl/svapp.hxx>
#include <vcl/alpha.hxx>
#include <osl/endian.h>
// -----------
// - Defines -
// -----------
#define PNGCHUNK_IHDR 0x49484452
#define PNGCHUNK_PLTE 0x504c5445
#define PNGCHUNK_IDAT 0x49444154
#define PNGCHUNK_IEND 0x49454e44
#define PNGCHUNK_bKGD 0x624b4744
#define PNGCHUNK_cHRM 0x6348524d
#define PNGCHUNK_gAMA 0x67414d41
#define PNGCHUNK_hIST 0x68495354
#define PNGCHUNK_pHYs 0x70485973
#define PNGCHUNK_sBIT 0x73425420
#define PNGCHUNK_tIME 0x74494d45
#define PNGCHUNK_tEXt 0x74455874
#define PNGCHUNK_tRNS 0x74524e53
#define PNGCHUNK_zTXt 0x7a545874
#define PMGCHUNG_msOG 0x6d734f47 // Microsoft Office Animated GIF
#define VIEWING_GAMMA 2.35
#define DISPLAY_GAMMA 1.0
namespace vcl
{
// -----------
// - statics -
// -----------
// ------------------------------------------------------------------------------
static const sal_uInt8 mpDefaultColorTable[ 256 ] =
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
// -------------
// - PNGReaderImpl -
// -------------
class PNGReaderImpl
{
private:
SvStream& mrPNGStream;
sal_uInt16 mnOrigStreamMode;
std::vector< vcl::PNGReader::ChunkData > maChunkSeq;
std::vector< vcl::PNGReader::ChunkData >::iterator maChunkIter;
std::vector< sal_uInt8 >::iterator maDataIter;
Bitmap* mpBmp;
BitmapWriteAccess* mpAcc;
Bitmap* mpMaskBmp;
AlphaMask* mpAlphaMask;
BitmapWriteAccess* mpMaskAcc;
ZCodec* mpZCodec;
sal_uInt8* mpInflateInBuf; // as big as the size of a scanline + alphachannel + 1
sal_uInt8* mpScanPrior; // pointer to the latest scanline
sal_uInt8* mpTransTab; // for transparency in images with palette colortype
sal_uInt8* mpScanCurrent; // pointer into the current scanline
sal_uInt8* mpColorTable; //
sal_Size mnStreamSize; // estimate of PNG file size
sal_uInt32 mnChunkType; // Type of current PNG chunk
sal_Int32 mnChunkLen; // Length of current PNG chunk
Size maOrigSize; // pixel size of the full image
Size maTargetSize; // pixel size of the result image
Size maPhysSize; // prefered size in MAP_100TH_MM units
sal_uInt32 mnBPP; // number of bytes per pixel
sal_uInt32 mnScansize; // max size of scanline
sal_uInt32 mnYpos; // latest y position in full image
int mnPass; // if interlaced the latest pass ( 1..7 ) else 7
sal_uInt32 mnXStart; // the starting X for the current pass
sal_uInt32 mnXAdd; // the increment for input images X coords for the current pass
sal_uInt32 mnYAdd; // the increment for input images Y coords for the current pass
int mnPreviewShift; // shift to convert orig image coords into preview image coords
int mnPreviewMask; // == ((1 << mnPreviewShift) - 1)
sal_uInt16 mnIStmOldMode;
sal_uInt16 mnTargetDepth; // pixel depth of target bitmap
sal_uInt8 mnTransRed;
sal_uInt8 mnTransGreen;
sal_uInt8 mnTransBlue;
sal_uInt8 mnPngDepth; // pixel depth of PNG data
sal_uInt8 mnColorType;
sal_uInt8 mnCompressionType;
sal_uInt8 mnFilterType;
sal_uInt8 mnInterlaceType;
BitmapColor mcTranspColor; // transparency mask's transparency "color"
BitmapColor mcOpaqueColor; // transparency mask's opaque "color"
sal_Bool mbTransparent; // graphic includes an tRNS Chunk or an alpha Channel
sal_Bool mbAlphaChannel; // is true for ColorType 4 and 6
sal_Bool mbRGBTriple;
sal_Bool mbPalette; // sal_False if we need a Palette
sal_Bool mbGrayScale;
sal_Bool mbzCodecInUse;
sal_Bool mbStatus;
sal_Bool mbIDAT; // sal_True if finished with enough IDAT chunks
sal_Bool mbGamma; // sal_True if Gamma Correction available
sal_Bool mbpHYs; // sal_True if pysical size of pixel available
sal_Bool mbIgnoreGammaChunk;
bool ReadNextChunk();
void ReadRemainingChunks();
void ImplSetPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor & );
void ImplSetPixel( sal_uInt32 y, sal_uInt32 x, sal_uInt8 nPalIndex );
void ImplSetTranspPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor &, sal_Bool bTrans );
void ImplSetAlphaPixel( sal_uInt32 y, sal_uInt32 x, sal_uInt8 nPalIndex, sal_uInt8 nAlpha );
void ImplSetAlphaPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor&, sal_uInt8 nAlpha );
void ImplReadIDAT();
bool ImplPreparePass();
void ImplApplyFilter();
void ImplDrawScanline( sal_uInt32 nXStart, sal_uInt32 nXAdd );
sal_Bool ImplReadTransparent();
void ImplGetGamma();
void ImplGetBackground();
sal_uInt8 ImplScaleColor();
sal_Bool ImplReadHeader( const Size& rPreviewSizeHint );
sal_Bool ImplReadPalette();
void ImplGetGrayPalette( sal_uInt16 );
sal_uInt32 ImplReadsal_uInt32();
public:
PNGReaderImpl( SvStream& );
~PNGReaderImpl();
BitmapEx GetBitmapEx( const Size& rPreviewSizeHint );
const std::vector< PNGReader::ChunkData >& GetAllChunks();
void SetIgnoreGammaChunk( sal_Bool bIgnore ){ mbIgnoreGammaChunk = bIgnore; };
};
// ------------------------------------------------------------------------------
PNGReaderImpl::PNGReaderImpl( SvStream& rPNGStream )
: mrPNGStream( rPNGStream ),
mpBmp ( NULL ),
mpAcc ( NULL ),
mpMaskBmp ( NULL ),
mpAlphaMask ( NULL ),
mpMaskAcc ( NULL ),
mpZCodec ( new ZCodec( DEFAULT_IN_BUFSIZE, DEFAULT_OUT_BUFSIZE, MAX_MEM_USAGE ) ),
mpInflateInBuf ( NULL ),
mpScanPrior ( NULL ),
mpTransTab ( NULL ),
mpScanCurrent ( NULL ),
mpColorTable ( (sal_uInt8*) mpDefaultColorTable ),
mnPass ( 0 ),
mbPalette( sal_False ),
mbzCodecInUse ( sal_False ),
mbStatus( sal_True),
mbIDAT( sal_False ),
mbGamma ( sal_False ),
mbpHYs ( sal_False ),
mbIgnoreGammaChunk ( sal_False )
{
// prepare the PNG data stream
mnOrigStreamMode = mrPNGStream.GetNumberFormatInt();
mrPNGStream.SetNumberFormatInt( NUMBERFORMAT_INT_BIGENDIAN );
// prepare the chunk reader
maChunkSeq.reserve( 16 );
maChunkIter = maChunkSeq.begin();
// estimate PNG file size (to allow sanity checks)
const sal_Size nStreamPos = mrPNGStream.Tell();
mrPNGStream.Seek( STREAM_SEEK_TO_END );
mnStreamSize = mrPNGStream.Tell();
mrPNGStream.Seek( nStreamPos );
// check the PNG header magic
sal_uInt32 nDummy = 0;
mrPNGStream >> nDummy;
mbStatus = (nDummy == 0x89504e47);
mrPNGStream >> nDummy;
mbStatus &= (nDummy == 0x0d0a1a0a);
mnPreviewShift = 0;
mnPreviewMask = (1 << mnPreviewShift) - 1;
}
// ------------------------------------------------------------------------
PNGReaderImpl::~PNGReaderImpl()
{
mrPNGStream.SetNumberFormatInt( mnOrigStreamMode );
if ( mbzCodecInUse )
mpZCodec->EndCompression();
if( mpColorTable != mpDefaultColorTable )
delete[] mpColorTable;
delete mpBmp;
delete mpAlphaMask;
delete mpMaskBmp;
delete[] mpTransTab;
delete[] mpInflateInBuf;
delete[] mpScanPrior;
delete mpZCodec;
}
// ------------------------------------------------------------------------
bool PNGReaderImpl::ReadNextChunk()
{
if( maChunkIter == maChunkSeq.end() )
{
// get the next chunk from the stream
// unless we are at the end of the PNG stream
if( mrPNGStream.IsEof() || (mrPNGStream.GetError() != ERRCODE_NONE) )
return false;
if( !maChunkSeq.empty() && (maChunkSeq.back().nType == PNGCHUNK_IEND) )
return false;
PNGReader::ChunkData aDummyChunk;
maChunkIter = maChunkSeq.insert( maChunkSeq.end(), aDummyChunk );
PNGReader::ChunkData& rChunkData = *maChunkIter;
// read the chunk header
mrPNGStream >> mnChunkLen >> mnChunkType;
rChunkData.nType = mnChunkType;
// #128377#/#149343# sanity check for chunk length
if( mnChunkLen < 0 )
return false;
const sal_Size nStreamPos = mrPNGStream.Tell();
if( nStreamPos + mnChunkLen >= mnStreamSize )
return false;
// calculate chunktype CRC (swap it back to original byte order)
sal_uInt32 nChunkType = mnChunkType;;
#if defined(__LITTLEENDIAN) || defined(OSL_LITENDIAN)
nChunkType = SWAPLONG( nChunkType );
#endif
sal_uInt32 nCRC32 = rtl_crc32( 0, &nChunkType, 4 );
// read the chunk data and check the CRC
if( mnChunkLen && !mrPNGStream.IsEof() )
{
rChunkData.aData.resize( mnChunkLen );
sal_Int32 nBytesRead = 0;
do {
sal_uInt8* pPtr = &rChunkData.aData[ nBytesRead ];
nBytesRead += mrPNGStream.Read( pPtr, mnChunkLen - nBytesRead );
} while ( ( nBytesRead < mnChunkLen ) && ( mrPNGStream.GetError() == ERRCODE_NONE ) );
nCRC32 = rtl_crc32( nCRC32, &rChunkData.aData[ 0 ], mnChunkLen );
maDataIter = rChunkData.aData.begin();
}
sal_uInt32 nCheck(0);
mrPNGStream >> nCheck;
if( nCRC32 != nCheck )
return false;
}
else
{
// the next chunk was already read
mnChunkType = (*maChunkIter).nType;
mnChunkLen = (*maChunkIter).aData.size();
maDataIter = (*maChunkIter).aData.begin();
}
++maChunkIter;
if( mnChunkType == PNGCHUNK_IEND )
return false;
return true;
}
// ------------------------------------------------------------------------
// read the remaining chunks from mrPNGStream
void PNGReaderImpl::ReadRemainingChunks()
{
while( ReadNextChunk() ) ;
}
// ------------------------------------------------------------------------
const std::vector< vcl::PNGReader::ChunkData >& PNGReaderImpl::GetAllChunks()
{
ReadRemainingChunks();
return maChunkSeq;
}
// ------------------------------------------------------------------------
BitmapEx PNGReaderImpl::GetBitmapEx( const Size& rPreviewSizeHint )
{
// reset to the first chunk
maChunkIter = maChunkSeq.begin();
// first chunk must be IDHR
if( mbStatus && ReadNextChunk() )
{
if (mnChunkType == PNGCHUNK_IHDR)
mbStatus = ImplReadHeader( rPreviewSizeHint );
else
mbStatus = false;
}
// parse the remaining chunks
while( mbStatus && !mbIDAT && ReadNextChunk() )
{
switch( mnChunkType )
{
case PNGCHUNK_IHDR :
{
mbStatus = false; //IHDR should only appear as the first chunk
}
break;
case PNGCHUNK_gAMA : // the gamma chunk must precede
{ // the 'IDAT' and also the 'PLTE'(if available )
if ( !mbIgnoreGammaChunk && ( mbIDAT == sal_False ) )
ImplGetGamma();
}
break;
case PNGCHUNK_PLTE :
{
if ( !mbPalette )
mbStatus = ImplReadPalette();
}
break;
case PNGCHUNK_tRNS :
{
if ( !mbIDAT ) // the tRNS chunk must precede the IDAT
mbStatus = ImplReadTransparent();
}
break;
case PNGCHUNK_bKGD : // the background chunk must appear
{
if ( ( mbIDAT == sal_False ) && mbPalette ) // before the 'IDAT' and after the
ImplGetBackground(); // PLTE(if available ) chunk.
}
break;
case PNGCHUNK_IDAT :
{
if ( !mpInflateInBuf ) // taking care that the header has properly been read
mbStatus = sal_False;
else if ( !mbIDAT ) // the gfx is finished, but there may be left a zlibCRC of about 4Bytes
ImplReadIDAT();
}
break;
case PNGCHUNK_pHYs :
{
if ( !mbIDAT && mnChunkLen == 9 )
{
sal_uInt32 nXPixelPerMeter = ImplReadsal_uInt32();
sal_uInt32 nYPixelPerMeter = ImplReadsal_uInt32();
sal_uInt8 nUnitSpecifier = *maDataIter++;
if( (nUnitSpecifier == 1) && nXPixelPerMeter && nYPixelPerMeter )
{
mbpHYs = sal_True;
// convert into MAP_100TH_MM
maPhysSize.Width() = (sal_Int32)( (100000.0 * maOrigSize.Width()) / nXPixelPerMeter );
maPhysSize.Height() = (sal_Int32)( (100000.0 * maOrigSize.Height()) / nYPixelPerMeter );
}
}
}
break;
case PNGCHUNK_IEND:
mbStatus = mbIDAT; // there is a problem if the image is not complete yet
break;
}
}
// release write access of the bitmaps
if ( mpAcc )
mpBmp->ReleaseAccess( mpAcc ), mpAcc = NULL;
if ( mpMaskAcc )
{
if ( mpAlphaMask )
mpAlphaMask->ReleaseAccess( mpMaskAcc );
else if ( mpMaskBmp )
mpMaskBmp->ReleaseAccess( mpMaskAcc );
mpMaskAcc = NULL;
}
// return the resulting BitmapEx
BitmapEx aRet;
if( !mbStatus || !mbIDAT )
aRet.Clear();
else
{
if ( mpAlphaMask )
aRet = BitmapEx( *mpBmp, *mpAlphaMask );
else if ( mpMaskBmp )
aRet = BitmapEx( *mpBmp, *mpMaskBmp );
else
aRet = *mpBmp;
if ( mbpHYs && maPhysSize.Width() && maPhysSize.Height() )
{
aRet.SetPrefMapMode( MAP_100TH_MM );
aRet.SetPrefSize( maPhysSize );
}
}
return aRet;
}
// ------------------------------------------------------------------------
sal_Bool PNGReaderImpl::ImplReadHeader( const Size& rPreviewSizeHint )
{
if( mnChunkLen < 13 )
return sal_False;
maOrigSize.Width() = ImplReadsal_uInt32();
maOrigSize.Height() = ImplReadsal_uInt32();
if ( !maOrigSize.Width() || !maOrigSize.Height() )
return sal_False;
mnPngDepth = *(maDataIter++);
mnColorType = *(maDataIter++);
mnCompressionType = *(maDataIter++);
if( mnCompressionType != 0 ) // unknown compression type
return sal_False;
mnFilterType = *(maDataIter++);
if( mnFilterType != 0 ) // unknown filter type
return sal_False;
mnInterlaceType = *(maDataIter++);
switch ( mnInterlaceType ) // filter type valid ?
{
case 0 : // progressive image
mnPass = 7;
break;
case 1 : // Adam7-interlaced image
mnPass = 0;
break;
default:
return sal_False;
}
mbPalette = sal_True;
mbIDAT = mbAlphaChannel = mbTransparent = sal_False;
mbGrayScale = mbRGBTriple = sal_False;
mnTargetDepth = mnPngDepth;
sal_uInt64 nScansize64 = ( ( static_cast< sal_uInt64 >( maOrigSize.Width() ) * mnPngDepth ) + 7 ) >> 3;
// valid color types are 0,2,3,4 & 6
switch ( mnColorType )
{
case 0 : // each pixel is a grayscale
{
switch ( mnPngDepth )
{
case 2 : // 2bit target not available -> use four bits
mnTargetDepth = 4; // we have to expand the bitmap
mbGrayScale = sal_True;
break;
case 16 :
mnTargetDepth = 8; // we have to reduce the bitmap
// fall through
case 1 :
case 4 :
case 8 :
mbGrayScale = sal_True;
break;
default :
return sal_False;
}
}
break;
case 2 : // each pixel is an RGB triple
{
mbRGBTriple = sal_True;
nScansize64 *= 3;
switch ( mnPngDepth )
{
case 16 : // we have to reduce the bitmap
case 8 :
mnTargetDepth = 24;
break;
default :
return sal_False;
}
}
break;
case 3 : // each pixel is a palette index
{
switch ( mnPngDepth )
{
case 2 :
mnTargetDepth = 4; // we have to expand the bitmap
// fall through
case 1 :
case 4 :
case 8 :
mbPalette = sal_False;
break;
default :
return sal_False;
}
}
break;
case 4 : // each pixel is a grayscale sample followed by an alpha sample
{
nScansize64 *= 2;
mbAlphaChannel = sal_True;
switch ( mnPngDepth )
{
case 16 :
mnTargetDepth = 8; // we have to reduce the bitmap
case 8 :
mbGrayScale = sal_True;
break;
default :
return sal_False;
}
}
break;
case 6 : // each pixel is an RGB triple followed by an alpha sample
{
mbRGBTriple = sal_True;
nScansize64 *= 4;
mbAlphaChannel = sal_True;
switch (mnPngDepth )
{
case 16 : // we have to reduce the bitmap
case 8 :
mnTargetDepth = 24;
break;
default :
return sal_False;
}
}
break;
default :
return sal_False;
}
mnBPP = static_cast< sal_uInt32 >( nScansize64 / maOrigSize.Width() );
if ( !mnBPP )
mnBPP = 1;
nScansize64++; // each scanline includes one filterbyte
if ( nScansize64 > SAL_MAX_UINT32 )
return sal_False;
mnScansize = static_cast< sal_uInt32 >( nScansize64 );
// calculate target size from original size and the preview hint
if( rPreviewSizeHint.Width() || rPreviewSizeHint.Height() )
{
Size aPreviewSize( rPreviewSizeHint.Width(), rPreviewSizeHint.Height() );
maTargetSize = maOrigSize;
if( aPreviewSize.Width() == 0 ) {
aPreviewSize.setWidth( ( maOrigSize.Width()*aPreviewSize.Height() )/maOrigSize.Height() );
if( aPreviewSize.Width() <= 0 )
aPreviewSize.setWidth( 1 );
} else if( aPreviewSize.Height() == 0 ) {
aPreviewSize.setHeight( ( maOrigSize.Height()*aPreviewSize.Width() )/maOrigSize.Width() );
if( aPreviewSize.Height() <= 0 )
aPreviewSize.setHeight( 1 );
}
if( aPreviewSize.Width() < maOrigSize.Width() && aPreviewSize.Height() < maOrigSize.Height() ) {
OSL_TRACE("preview size %dx%d", aPreviewSize.Width(), aPreviewSize.Height() );
for( int i = 1; i < 5; ++i )
{
if( (maTargetSize.Width() >> i) < aPreviewSize.Width() )
break;
if( (maTargetSize.Height() >> i) < aPreviewSize.Height() )
break;
mnPreviewShift = i;
}
mnPreviewMask = (1 << mnPreviewShift) - 1;
}
}
maTargetSize.Width() = (maOrigSize.Width() + mnPreviewMask) >> mnPreviewShift;
maTargetSize.Height() = (maOrigSize.Height() + mnPreviewMask) >> mnPreviewShift;
//round bits up to nearest multiple of 8 and divide by 8 to get num of bytes per pixel
int nBytesPerPixel = ((mnTargetDepth + 7) & ~7)/8;
//stupidly big, forget about it
if (maTargetSize.Width() >= SAL_MAX_INT32 / nBytesPerPixel / maTargetSize.Height())
{
SAL_WARN( "vcl", "overlarge png dimensions: " <<
maTargetSize.Width() << " x " << maTargetSize.Height() << " depth: " << mnTargetDepth);
return sal_False;
}
// TODO: switch between both scanlines instead of copying
mpInflateInBuf = new (std::nothrow) sal_uInt8[ mnScansize ];
mpScanCurrent = mpInflateInBuf;
mpScanPrior = new (std::nothrow) sal_uInt8[ mnScansize ];
if ( !mpInflateInBuf || !mpScanPrior )
return sal_False;
mpBmp = new Bitmap( maTargetSize, mnTargetDepth );
mpAcc = mpBmp->AcquireWriteAccess();
if( !mpAcc )
return sal_False;
mpBmp->SetSourceSizePixel( maOrigSize );
if ( mbAlphaChannel )
{
mpAlphaMask = new AlphaMask( maTargetSize );
mpAlphaMask->Erase( 128 );
mpMaskAcc = mpAlphaMask->AcquireWriteAccess();
if( !mpMaskAcc )
return sal_False;
}
if ( mbGrayScale )
ImplGetGrayPalette( mnPngDepth );
ImplPreparePass();
return sal_True;
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplGetGrayPalette( sal_uInt16 nBitDepth )
{
if( nBitDepth > 8 )
nBitDepth = 8;
sal_uInt16 nPaletteEntryCount = 1 << nBitDepth;
sal_uInt32 nAdd = nBitDepth ? 256 / (nPaletteEntryCount - 1) : 0;
// no bitdepth==2 available
// but bitdepth==4 with two unused bits is close enough
if( nBitDepth == 2 )
nPaletteEntryCount = 16;
mpAcc->SetPaletteEntryCount( nPaletteEntryCount );
for ( sal_uInt32 i = 0, nStart = 0; nStart < 256; i++, nStart += nAdd )
mpAcc->SetPaletteColor( (sal_uInt16)i, BitmapColor( mpColorTable[ nStart ],
mpColorTable[ nStart ], mpColorTable[ nStart ] ) );
}
// ------------------------------------------------------------------------
sal_Bool PNGReaderImpl::ImplReadPalette()
{
sal_uInt16 nCount = static_cast<sal_uInt16>( mnChunkLen / 3 );
if ( ( ( mnChunkLen % 3 ) == 0 ) && ( ( 0 < nCount ) && ( nCount <= 256 ) ) && mpAcc )
{
mbPalette = sal_True;
mpAcc->SetPaletteEntryCount( (sal_uInt16) nCount );
for ( sal_uInt16 i = 0; i < nCount; i++ )
{
sal_uInt8 nRed = mpColorTable[ *maDataIter++ ];
sal_uInt8 nGreen = mpColorTable[ *maDataIter++ ];
sal_uInt8 nBlue = mpColorTable[ *maDataIter++ ];
mpAcc->SetPaletteColor( i, Color( nRed, nGreen, nBlue ) );
}
}
else
mbStatus = sal_False;
return mbStatus;
}
// ------------------------------------------------------------------------
sal_Bool PNGReaderImpl::ImplReadTransparent()
{
bool bNeedAlpha = false;
if ( mpTransTab == NULL )
{
switch ( mnColorType )
{
case 0 :
{
if ( mnChunkLen == 2 )
{
mpTransTab = new sal_uInt8[ 256 ];
rtl_fillMemory( mpTransTab, 256, 0xff );
// color type 0 and 4 is always greyscale,
// so the return value can be used as index
sal_uInt8 nIndex = ImplScaleColor();
mpTransTab[ nIndex ] = 0;
mbTransparent = true;
}
}
break;
case 2 :
{
if ( mnChunkLen == 6 )
{
mnTransRed = ImplScaleColor();
mnTransGreen = ImplScaleColor();
mnTransBlue = ImplScaleColor();
mbTransparent = true;
}
}
break;
case 3 :
{
if ( mnChunkLen <= 256 )
{
mbTransparent = true;
mpTransTab = new sal_uInt8 [ 256 ];
rtl_fillMemory( mpTransTab, 256, 0xff );
if (mnChunkLen > 0)
{
rtl_copyMemory( mpTransTab, &(*maDataIter), mnChunkLen );
maDataIter += mnChunkLen;
// need alpha transparency if not on/off masking
for( int i = 0; i < mnChunkLen; ++i )
bNeedAlpha |= (mpTransTab[i]!=0x00) && (mpTransTab[i]!=0xFF);
}
}
}
break;
}
}
if( mbTransparent && !mbAlphaChannel && !mpMaskBmp )
{
if( bNeedAlpha)
{
mpAlphaMask = new AlphaMask( maTargetSize );
mpMaskAcc = mpAlphaMask->AcquireWriteAccess();
}
else
{
mpMaskBmp = new Bitmap( maTargetSize, 1 );
mpMaskAcc = mpMaskBmp->AcquireWriteAccess();
}
mbTransparent = (mpMaskAcc != NULL);
if( !mbTransparent )
return sal_False;
mcOpaqueColor = BitmapColor( 0x00 );
mcTranspColor = BitmapColor( 0xFF );
mpMaskAcc->Erase( 0x00 );
}
return sal_True;
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplGetGamma()
{
if( mnChunkLen < 4 )
return;
sal_uInt32 nGammaValue = ImplReadsal_uInt32();
double fGamma = ( ( VIEWING_GAMMA / DISPLAY_GAMMA ) * ( (double)nGammaValue / 100000 ) );
double fInvGamma = ( fGamma <= 0.0 || fGamma > 10.0 ) ? 1.0 : ( 1.0 / fGamma );
if ( fInvGamma != 1.0 )
{
mbGamma = sal_True;
if ( mpColorTable == mpDefaultColorTable )
mpColorTable = new sal_uInt8[ 256 ];
for ( sal_Int32 i = 0; i < 256; i++ )
mpColorTable[ i ] = (sal_uInt8)(pow((double)i/255.0, fInvGamma) * 255.0 + 0.5);
if ( mbGrayScale )
ImplGetGrayPalette( mnPngDepth );
}
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplGetBackground()
{
switch ( mnColorType )
{
case 3 :
{
if ( mnChunkLen == 1 )
{
sal_uInt16 nCol = *maDataIter++;
if ( nCol < mpAcc->GetPaletteEntryCount() )
{
mpAcc->Erase( mpAcc->GetPaletteColor( (sal_uInt8)nCol ) );
break;
}
}
}
break;
case 0 :
case 4 :
{
if ( mnChunkLen == 2 )
{
// the color type 0 and 4 is always greyscale,
// so the return value can be used as index
sal_uInt8 nIndex = ImplScaleColor();
mpAcc->Erase( mpAcc->GetPaletteColor( nIndex ) );
}
}
break;
case 2 :
case 6 :
{
if ( mnChunkLen == 6 )
{
sal_uInt8 nRed = ImplScaleColor();
sal_uInt8 nGreen = ImplScaleColor();
sal_uInt8 nBlue = ImplScaleColor();
mpAcc->Erase( Color( nRed, nGreen, nBlue ) );
}
}
break;
}
}
// ------------------------------------------------------------------------
// for color type 0 and 4 (greyscale) the return value is always index to the color
// 2 and 6 (RGB) the return value is always the 8 bit color component
sal_uInt8 PNGReaderImpl::ImplScaleColor()
{
sal_uInt32 nMask = ( ( 1 << mnPngDepth ) - 1 );
sal_uInt16 nCol = ( *maDataIter++ << 8 );
nCol += *maDataIter++ & (sal_uInt16)nMask;
if ( mnPngDepth > 8 ) // convert 16bit graphics to 8
nCol >>= 8;
return (sal_uInt8) nCol;
}
// ------------------------------------------------------------------------
// ImplReadIDAT reads as much image data as needed
void PNGReaderImpl::ImplReadIDAT()
{
if( mnChunkLen > 0 )
{
if ( mbzCodecInUse == sal_False )
{
mbzCodecInUse = sal_True;
mpZCodec->BeginCompression( ZCODEC_PNG_DEFAULT );
}
mpZCodec->SetBreak( mnChunkLen );
SvMemoryStream aIStrm( &(*maDataIter), mnChunkLen, STREAM_READ );
while ( ( mpZCodec->GetBreak() ) )
{
// get bytes needed to fill the current scanline
sal_Int32 nToRead = mnScansize - (mpScanCurrent - mpInflateInBuf);
sal_Int32 nRead = mpZCodec->ReadAsynchron( aIStrm, mpScanCurrent, nToRead );
if ( nRead < 0 )
{
mbStatus = sal_False;
break;
}
if ( nRead < nToRead )
{
mpScanCurrent += nRead; // more ZStream data in the next IDAT chunk
break;
}
else // this scanline is Finished
{
mpScanCurrent = mpInflateInBuf;
ImplApplyFilter();
ImplDrawScanline( mnXStart, mnXAdd );
mnYpos += mnYAdd;
}
if ( mnYpos >= (sal_uInt32)maOrigSize.Height() )
{
if( (mnPass < 7) && mnInterlaceType )
if( ImplPreparePass() )
continue;
mbIDAT = true;
break;
}
}
}
if( mbIDAT )
{
mpZCodec->EndCompression();
mbzCodecInUse = sal_False;
}
}
// ---------------------------------------------------------------------------------------------------
bool PNGReaderImpl::ImplPreparePass()
{
struct InterlaceParams{ int mnXStart, mnYStart, mnXAdd, mnYAdd; };
static const InterlaceParams aInterlaceParams[8] =
{
// non-interlaced
{ 0, 0, 1, 1 },
// Adam7-interlaced
{ 0, 0, 8, 8 }, // pass 1
{ 4, 0, 8, 8 }, // pass 2
{ 0, 4, 4, 8 }, // pass 3
{ 2, 0, 4, 4 }, // pass 4
{ 0, 2, 2, 4 }, // pass 5
{ 1, 0, 2, 2 }, // pass 6
{ 0, 1, 1, 2 } // pass 7
};
const InterlaceParams* pParam = &aInterlaceParams[ 0 ];
if( mnInterlaceType )
{
while( ++mnPass <= 7 )
{
pParam = &aInterlaceParams[ mnPass ];
// skip this pass if the original image is too small for it
if( (pParam->mnXStart < maOrigSize.Width())
&& (pParam->mnYStart < maOrigSize.Height()) )
break;
}
if( mnPass > 7 )
return false;
// skip the last passes if possible (for scaled down target images)
if( mnPreviewMask & (pParam->mnXStart | pParam->mnYStart) )
return false;
}
mnYpos = pParam->mnYStart;
mnXStart = pParam->mnXStart;
mnXAdd = pParam->mnXAdd;
mnYAdd = pParam->mnYAdd;
// in Interlace mode the size of scanline is not constant
// so first we calculate the number of entrys
long nScanWidth = (maOrigSize.Width() - mnXStart + mnXAdd - 1) / mnXAdd;
mnScansize = nScanWidth;
if( mbRGBTriple )
mnScansize = 3 * nScanWidth;
if( mbAlphaChannel )
mnScansize += nScanWidth;
// convert to width in bytes
mnScansize = ( mnScansize*mnPngDepth + 7 ) >> 3;
++mnScansize; // scan size also needs room for the filtertype byte
rtl_zeroMemory( mpScanPrior, mnScansize );
return true;
}
// ----------------------------------------------------------------------------
// ImplApplyFilter writes the complete Scanline (nY)
// in interlace mode the parameter nXStart and nXAdd are non-zero
void PNGReaderImpl::ImplApplyFilter()
{
OSL_ASSERT( mnScansize >= mnBPP + 1 );
const sal_uInt8* const pScanEnd = mpInflateInBuf + mnScansize;
sal_uInt8 nFilterType = *mpInflateInBuf; // the filter type may change each scanline
switch ( nFilterType )
{
default: // unknown Scanline Filter Type
case 0: // Filter Type "None"
// we let the pixels pass and display the data unfiltered
break;
case 1: // Scanline Filter Type "Sub"
{
sal_uInt8* p1 = mpInflateInBuf + 1;
const sal_uInt8* p2 = p1;
p1 += mnBPP;
// use left pixels
do
*p1 = static_cast<sal_uInt8>( *p1 + *(p2++) );
while( ++p1 < pScanEnd );
}
break;
case 2: // Scanline Filter Type "Up"
{
sal_uInt8* p1 = mpInflateInBuf + 1;
const sal_uInt8* p2 = mpScanPrior + 1;
// use pixels from prior line
while( p1 < pScanEnd )
{
*p1 = static_cast<sal_uInt8>( *p1 + *(p2++) );
++p1;
}
}
break;
case 3: // Scanline Filter Type "Average"
{
sal_uInt8* p1 = mpInflateInBuf + 1;
const sal_uInt8* p2 = mpScanPrior + 1;
const sal_uInt8* p3 = p1;
// use one pixel from prior line
for( int n = mnBPP; --n >= 0; ++p1, ++p2)
*p1 = static_cast<sal_uInt8>( *p1 + (*p2 >> 1) );
// predict by averaging the left and prior line pixels
while( p1 < pScanEnd )
{
*p1 = static_cast<sal_uInt8>( *p1 + ((*(p2++) + *(p3++)) >> 1) );
++p1;
}
}
break;
case 4: // Scanline Filter Type "PaethPredictor"
{
sal_uInt8* p1 = mpInflateInBuf + 1;
const sal_uInt8* p2 = mpScanPrior + 1;
const sal_uInt8* p3 = p1;
const sal_uInt8* p4 = p2;
// use one pixel from prior line
for( int n = mnBPP; --n >= 0; ++p1)
*p1 = static_cast<sal_uInt8>( *p1 + *(p2++) );
// predict by using the left and the prior line pixels
while( p1 < pScanEnd )
{
int na = *(p2++);
int nb = *(p3++);
int nc = *(p4++);
int npa = nb - (int)nc;
int npb = na - (int)nc;
int npc = npa + npb;
if( npa < 0 )
npa =-npa;
if( npb < 0 )
npb =-npb;
if( npc < 0 )
npc =-npc;
if( npa > npb )
na = nb, npa = npb;
if( npa > npc )
na = nc;
*p1 = static_cast<sal_uInt8>( *p1 + na );
++p1;
}
}
break;
}
rtl_copyMemory( mpScanPrior, mpInflateInBuf, mnScansize );
}
// ---------------------------------------------------------------------------------------------------
// ImplDrawScanlines draws the complete Scanline (nY) into the target bitmap
// In interlace mode the parameter nXStart and nXAdd append to the currently used pass
void PNGReaderImpl::ImplDrawScanline( sal_uInt32 nXStart, sal_uInt32 nXAdd )
{
// optimization for downscaling
if( mnYpos & mnPreviewMask )
return;
if( nXStart & mnPreviewMask )
return;
// convert nY to pixel units in the target image
// => TODO; also do this for nX here instead of in the ImplSet*Pixel() methods
const sal_uInt32 nY = mnYpos >> mnPreviewShift;
const sal_uInt8* pTmp = mpInflateInBuf + 1;
if ( mpAcc->HasPalette() ) // alphachannel is not allowed by pictures including palette entries
{
switch ( mpAcc->GetBitCount() )
{
case 1 :
{
if ( mbTransparent )
{
for ( sal_Int32 nX = nXStart, nShift = 0; nX < maOrigSize.Width(); nX += nXAdd )
{
sal_uInt8 nCol;
nShift = (nShift - 1) & 7;
if ( nShift == 0 )
nCol = *(pTmp++);
else
nCol = static_cast<sal_uInt8>( *pTmp >> nShift );
nCol &= 1;
ImplSetAlphaPixel( nY, nX, nCol, mpTransTab[ nCol ] );
}
}
else
{ // BMP_FORMAT_1BIT_MSB_PAL
for ( sal_Int32 nX = nXStart, nShift = 0; nX < maOrigSize.Width(); nX += nXAdd )
{
nShift = (nShift - 1) & 7;
sal_uInt8 nCol;
if ( nShift == 0 )
nCol = *(pTmp++);
else
nCol = static_cast<sal_uInt8>( *pTmp >> nShift );
nCol &= 1;
ImplSetPixel( nY, nX, nCol );
}
}
}
break;
case 4 :
{
if ( mbTransparent )
{
if ( mnPngDepth == 4 ) // check if source has a two bit pixel format
{
for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, ++nXIndex )
{
if( nXIndex & 1 )
{
ImplSetAlphaPixel( nY, nX, *pTmp & 0x0f, mpTransTab[ *pTmp & 0x0f ] );
pTmp++;
}
else
{
ImplSetAlphaPixel( nY, nX, ( *pTmp >> 4 ) & 0x0f, mpTransTab[ *pTmp >> 4 ] );
}
}
}
else // if ( mnPngDepth == 2 )
{
for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ )
{
sal_uInt8 nCol;
switch( nXIndex & 3 )
{
case 0 :
nCol = *pTmp >> 6;
break;
case 1 :
nCol = ( *pTmp >> 4 ) & 0x03 ;
break;
case 2 :
nCol = ( *pTmp >> 2 ) & 0x03;
break;
case 3 :
nCol = ( *pTmp++ ) & 0x03;
break;
default: // get rid of nCol uninitialized warning
nCol = 0;
break;
}
ImplSetAlphaPixel( nY, nX, nCol, mpTransTab[ nCol ] );
}
}
}
else
{
if ( mnPngDepth == 4 ) // maybe the source is a two bitmap graphic
{ // BMP_FORMAT_4BIT_LSN_PAL
for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ )
{
if( nXIndex & 1 )
ImplSetPixel( nY, nX, *pTmp++ & 0x0f );
else
ImplSetPixel( nY, nX, ( *pTmp >> 4 ) & 0x0f );
}
}
else // if ( mnPngDepth == 2 )
{
for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ )
{
switch( nXIndex & 3 )
{
case 0 :
ImplSetPixel( nY, nX, *pTmp >> 6 );
break;
case 1 :
ImplSetPixel( nY, nX, ( *pTmp >> 4 ) & 0x03 );
break;
case 2 :
ImplSetPixel( nY, nX, ( *pTmp >> 2 ) & 0x03 );
break;
case 3 :
ImplSetPixel( nY, nX, *pTmp++ & 0x03 );
break;
}
}
}
}
}
break;
case 8 :
{
if ( mbAlphaChannel )
{
if ( mnPngDepth == 8 ) // maybe the source is a 16 bit grayscale
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 )
ImplSetAlphaPixel( nY, nX, pTmp[ 0 ], pTmp[ 1 ] );
}
else
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 )
ImplSetAlphaPixel( nY, nX, pTmp[ 0 ], pTmp[ 2 ] );
}
}
else if ( mbTransparent )
{
if ( mnPngDepth == 8 ) // maybe the source is a 16 bit grayscale
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp++ )
ImplSetAlphaPixel( nY, nX, *pTmp, mpTransTab[ *pTmp ] );
}
else
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 )
ImplSetAlphaPixel( nY, nX, *pTmp, mpTransTab[ *pTmp ] );
}
}
else // neither alpha nor transparency
{
if ( mnPngDepth == 8 ) // maybe the source is a 16 bit grayscale
{
if( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible
{
int nLineBytes = maOrigSize.Width();
mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_8BIT_PAL, nLineBytes );
pTmp += nLineBytes;
}
else
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd )
ImplSetPixel( nY, nX, *pTmp++ );
}
}
else
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 )
ImplSetPixel( nY, nX, *pTmp );
}
}
}
break;
default :
mbStatus = sal_False;
break;
}
}
else // no palette => truecolor
{
if( mbAlphaChannel ) // has RGB + alpha
{ // BMP_FORMAT_32BIT_TC_RGBA
if ( mnPngDepth == 8 ) // maybe the source has 16 bit per sample
{
if ( mpColorTable != mpDefaultColorTable )
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 )
ImplSetAlphaPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
mpColorTable[ pTmp[ 1 ] ],
mpColorTable[ pTmp[ 2 ] ] ), pTmp[ 3 ] );
}
else
{
// if ( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible
// {
// int nLineBytes = 4 * maOrigSize.Width();
// mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_32BIT_TC_RGBA, nLineBytes );
// pTmp += nLineBytes;
// }
// else
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 )
ImplSetAlphaPixel( nY, nX, BitmapColor( pTmp[0], pTmp[1], pTmp[2] ), pTmp[3] );
}
}
}
else
{ // BMP_FORMAT_64BIT_TC_RGBA
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 8 )
ImplSetAlphaPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
mpColorTable[ pTmp[ 2 ] ],
mpColorTable[ pTmp[ 4 ] ] ), pTmp[6] );
}
}
else if( mbTransparent ) // has RGB + transparency
{ // BMP_FORMAT_24BIT_TC_RGB
if ( mnPngDepth == 8 ) // maybe the source has 16 bit per sample
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 )
{
sal_uInt8 nRed = pTmp[ 0 ];
sal_uInt8 nGreen = pTmp[ 1 ];
sal_uInt8 nBlue = pTmp[ 2 ];
sal_Bool bTransparent = ( ( nRed == mnTransRed )
&& ( nGreen == mnTransGreen )
&& ( nBlue == mnTransBlue ) );
ImplSetTranspPixel( nY, nX, BitmapColor( mpColorTable[ nRed ],
mpColorTable[ nGreen ],
mpColorTable[ nBlue ] ), bTransparent );
}
}
else
{ // BMP_FORMAT_48BIT_TC_RGB
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 6 )
{
sal_uInt8 nRed = pTmp[ 0 ];
sal_uInt8 nGreen = pTmp[ 2 ];
sal_uInt8 nBlue = pTmp[ 4 ];
sal_Bool bTransparent = ( ( nRed == mnTransRed )
&& ( nGreen == mnTransGreen )
&& ( nBlue == mnTransBlue ) );
ImplSetTranspPixel( nY, nX, BitmapColor( mpColorTable[ nRed ],
mpColorTable[ nGreen ],
mpColorTable[ nBlue ] ), bTransparent );
}
}
}
else // has RGB but neither alpha nor transparency
{ // BMP_FORMAT_24BIT_TC_RGB
if ( mnPngDepth == 8 ) // maybe the source has 16 bit per sample
{
if ( mpColorTable != mpDefaultColorTable )
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 )
ImplSetPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
mpColorTable[ pTmp[ 1 ] ],
mpColorTable[ pTmp[ 2 ] ] ) );
}
else
{
if( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible
{
int nLineBytes = maOrigSize.Width() * 3;
mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_24BIT_TC_RGB, nLineBytes );
pTmp += nLineBytes;
}
else
{
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 )
ImplSetPixel( nY, nX, BitmapColor( pTmp[0], pTmp[1], pTmp[2] ) );
}
}
}
else
{ // BMP_FORMAT_48BIT_TC_RGB
for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 6 )
ImplSetPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
mpColorTable[ pTmp[ 2 ] ],
mpColorTable[ pTmp[ 4 ] ] ) );
}
}
}
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplSetPixel( sal_uInt32 nY, sal_uInt32 nX, const BitmapColor& rBitmapColor )
{
// TODO: get preview mode checks out of inner loop
if( nX & mnPreviewMask )
return;
nX >>= mnPreviewShift;
mpAcc->SetPixel( nY, nX, rBitmapColor );
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplSetPixel( sal_uInt32 nY, sal_uInt32 nX, sal_uInt8 nPalIndex )
{
// TODO: get preview mode checks out of inner loop
if( nX & mnPreviewMask )
return;
nX >>= mnPreviewShift;
mpAcc->SetPixel( nY, nX, nPalIndex );
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplSetTranspPixel( sal_uInt32 nY, sal_uInt32 nX, const BitmapColor& rBitmapColor, sal_Bool bTrans )
{
// TODO: get preview mode checks out of inner loop
if( nX & mnPreviewMask )
return;
nX >>= mnPreviewShift;
mpAcc->SetPixel( nY, nX, rBitmapColor );
if ( bTrans )
mpMaskAcc->SetPixel( nY, nX, mcTranspColor );
else
mpMaskAcc->SetPixel( nY, nX, mcOpaqueColor );
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplSetAlphaPixel( sal_uInt32 nY, sal_uInt32 nX,
sal_uInt8 nPalIndex, sal_uInt8 nAlpha )
{
// TODO: get preview mode checks out of inner loop
if( nX & mnPreviewMask )
return;
nX >>= mnPreviewShift;
mpAcc->SetPixel( nY, nX, nPalIndex );
mpMaskAcc->SetPixel( nY, nX, ~nAlpha );
}
// ------------------------------------------------------------------------
void PNGReaderImpl::ImplSetAlphaPixel( sal_uInt32 nY, sal_uInt32 nX,
const BitmapColor& rBitmapColor, sal_uInt8 nAlpha )
{
// TODO: get preview mode checks out of inner loop
if( nX & mnPreviewMask )
return;
nX >>= mnPreviewShift;
mpAcc->SetPixel( nY, nX, rBitmapColor );
mpMaskAcc->SetPixel( nY, nX, ~nAlpha );
}
// ------------------------------------------------------------------------
sal_uInt32 PNGReaderImpl::ImplReadsal_uInt32()
{
sal_uInt32 nRet;
nRet = *maDataIter++;
nRet <<= 8;
nRet |= *maDataIter++;
nRet <<= 8;
nRet |= *maDataIter++;
nRet <<= 8;
nRet |= *maDataIter++;
return nRet;
}
// ------------------------------------------------------------------------
// -------------
// - PNGReader -
// -------------
PNGReader::PNGReader( SvStream& rIStm ) :
mpImpl( new ::vcl::PNGReaderImpl( rIStm ) )
{
}
// ------------------------------------------------------------------------
PNGReader::~PNGReader()
{
delete mpImpl;
}
// ------------------------------------------------------------------------
BitmapEx PNGReader::Read( const Size& i_rPreviewSizeHint )
{
return mpImpl->GetBitmapEx( i_rPreviewSizeHint );
}
// ------------------------------------------------------------------------
const std::vector< vcl::PNGReader::ChunkData >& PNGReader::GetChunks() const
{
return mpImpl->GetAllChunks();
}
// ------------------------------------------------------------------------
void PNGReader::SetIgnoreGammaChunk( sal_Bool b )
{
mpImpl->SetIgnoreGammaChunk( b );
}
} // namespace vcl
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|