1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
// Natural, Clamped, or Periodic Cubic Splines
//
// Input: A list of N+1 points (x_i,a_i), 0 <= i <= N, which are sampled
// from a function, a_i = f(x_i). The function f is unknown. Boundary
// conditions are
// (1) Natural splines: f"(x_0) = f"(x_N) = 0
// (2) Clamped splines: f'(x_0) and f'(x_N) are user-specified.
// (3) Periodic splines: f(x_0) = f(x_N) [in which case a_N = a_0 is
// required in the input], f'(x_0) = f'(x_N), and f"(x_0) = f"(x_N).
//
// Output: b_i, c_i, d_i, 0 <= i <= N-1, which are coefficients for the cubic
// spline S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 for
// x_i <= x < x_{i+1}.
//
// The natural and clamped algorithms were implemented from
//
// Numerical Analysis, 3rd edition
// Richard L. Burden and J. Douglas Faires
// Prindle, Weber & Schmidt
// Boston, 1985, pp. 122-124.
//
// The algorithm sets up a tridiagonal linear system of equations in the
// c_i values. This can be solved in O(N) time.
//
// The periodic spline algorithm was implemented from my own derivation. The
// linear system of equations is not tridiagonal. For now I use a standard
// linear solver that does not take advantage of the sparseness of the
// matrix. Therefore for very large N, you may have to worry about memory
// usage.
#include <sal/config.h>
#include "cspline.h"
#include "solver.h"
void NaturalSpline (int N, double* x, double* a, double*& b, double*& c,
double*& d)
{
const double oneThird = 1.0/3.0;
int i;
double* h = new double[N];
double* hdiff = new double[N];
double* alpha = new double[N];
for (i = 0; i < N; i++){
h[i] = x[i+1]-x[i];
}
for (i = 1; i < N; i++)
hdiff[i] = x[i+1]-x[i-1];
for (i = 1; i < N; i++)
{
double numer = 3.0*(a[i+1]*h[i-1]-a[i]*hdiff[i]+a[i-1]*h[i]);
double denom = h[i-1]*h[i];
alpha[i] = numer/denom;
}
double* ell = new double[N+1];
double* mu = new double[N];
double* z = new double[N+1];
double recip;
ell[0] = 1.0;
mu[0] = 0.0;
z[0] = 0.0;
for (i = 1; i < N; i++)
{
ell[i] = 2.0*hdiff[i]-h[i-1]*mu[i-1];
recip = 1.0/ell[i];
mu[i] = recip*h[i];
z[i] = recip*(alpha[i]-h[i-1]*z[i-1]);
}
ell[N] = 1.0;
z[N] = 0.0;
b = new double[N];
c = new double[N+1];
d = new double[N];
c[N] = 0.0;
for (i = N-1; i >= 0; i--)
{
c[i] = z[i]-mu[i]*c[i+1];
recip = 1.0/h[i];
b[i] = recip*(a[i+1]-a[i])-h[i]*(c[i+1]+2.0*c[i])*oneThird;
d[i] = oneThird*recip*(c[i+1]-c[i]);
}
delete[] h;
delete[] hdiff;
delete[] alpha;
delete[] ell;
delete[] mu;
delete[] z;
}
void PeriodicSpline (int N, double* x, double* a, double*& b, double*& c,
double*& d)
{
double* h = new double[N];
int i;
for (i = 0; i < N; i++)
h[i] = x[i+1]-x[i];
mgcLinearSystemD sys;
double** mat = sys.NewMatrix(N+1); // guaranteed to be zeroed memory
c = sys.NewVector(N+1); // guaranteed to be zeroed memory
// c[0] - c[N] = 0
mat[0][0] = +1.0f;
mat[0][N] = -1.0f;
// h[i-1]*c[i-1]+2*(h[i-1]+h[i])*c[i]+h[i]*c[i+1] =
// 3*{(a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]}
for (i = 1; i <= N-1; i++)
{
mat[i][i-1] = h[i-1];
mat[i][i ] = 2.0f*(h[i-1]+h[i]);
mat[i][i+1] = h[i];
c[i] = 3.0f*((a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]);
}
// "wrap around equation" for periodicity
// h[N-1]*c[N-1]+2*(h[N-1]+h[0])*c[0]+h[0]*c[1] =
// 3*{(a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]}
mat[N][N-1] = h[N-1];
mat[N][0 ] = 2.0f*(h[N-1]+h[0]);
mat[N][1 ] = h[0];
c[N] = 3.0f*((a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]);
// solve for c[0] through c[N]
sys.Solve(N+1,mat,c);
const double oneThird = 1.0/3.0;
b = new double[N];
d = new double[N];
for (i = 0; i < N; i++)
{
b[i] = (a[i+1]-a[i])/h[i] - oneThird*(c[i+1]+2.0f*c[i])*h[i];
d[i] = oneThird*(c[i+1]-c[i])/h[i];
}
delete[] h;
sys.DeleteMatrix(N+1,mat);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|