1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
// must be first
#include <canvas/debug.hxx>
#include <canvas/verbosetrace.hxx>
#include <simplecontinuousactivitybase.hxx>
namespace slideshow
{
namespace internal
{
SimpleContinuousActivityBase::SimpleContinuousActivityBase(
const ActivityParameters& rParms ) :
ActivityBase( rParms ),
maTimer( rParms.mrActivitiesQueue.getTimer() ),
mnMinSimpleDuration( rParms.mnMinDuration ),
mnMinNumberOfFrames( rParms.mnMinNumberOfFrames ),
mnCurrPerformCalls( 0 )
{
}
void SimpleContinuousActivityBase::startAnimation()
{
// init timer. We measure animation time only when we're
// actually started.
maTimer.reset();
}
double SimpleContinuousActivityBase::calcTimeLag() const
{
ActivityBase::calcTimeLag();
if (! isActive())
return 0.0;
// retrieve locally elapsed time
const double nCurrElapsedTime( maTimer.getElapsedTime() );
// log time
VERBOSE_TRACE( "SimpleContinuousActivityBase::calcTimeLag(): "
"next step is based on time: %f", nCurrElapsedTime );
// go to great length to ensure a proper animation
// run. Since we don't know how often we will be called
// here, try to spread the animator calls uniquely over
// the [0,1] parameter range. Be aware of the fact that
// perform will be called at least mnMinNumberOfTurns
// times.
// fraction of time elapsed
const double nFractionElapsedTime(
nCurrElapsedTime / mnMinSimpleDuration );
// fraction of minimum calls performed
const double nFractionRequiredCalls(
double(mnCurrPerformCalls) / mnMinNumberOfFrames );
// okay, so now, the decision is easy:
// If the fraction of time elapsed is smaller than the
// number of calls required to be performed, then we calc
// the position on the animation range according to
// elapsed time. That is, we're so to say ahead of time.
// In contrary, if the fraction of time elapsed is larger,
// then we're lagging, and we thus calc the position on
// the animation time line according to the fraction of
// calls performed. Thus, the animation is forced to slow
// down, and take the required minimal number of steps,
// sufficiently equally distributed across the animation
// time line.
if( nFractionElapsedTime < nFractionRequiredCalls )
{
VERBOSE_TRACE( "SimpleContinuousActivityBase::calcTimeLag(): "
"t=%f is based on time", nFractionElapsedTime );
return 0.0;
}
else
{
VERBOSE_TRACE( "SimpleContinuousActivityBase::perform(): "
"t=%f is based on number of calls",
nFractionRequiredCalls );
// lag global time, so all other animations lag, too:
return ((nFractionElapsedTime - nFractionRequiredCalls)
* mnMinSimpleDuration);
}
}
bool SimpleContinuousActivityBase::perform()
{
// call base class, for start() calls and end handling
if( !ActivityBase::perform() )
return false; // done, we're ended
// get relative animation position
// ===============================
const double nCurrElapsedTime( maTimer.getElapsedTime() );
double nT( nCurrElapsedTime / mnMinSimpleDuration );
// one of the stop criteria reached?
// =================================
// will be set to true below, if one of the termination criteria
// matched.
bool bActivityEnding( false );
if( isRepeatCountValid() )
{
// Finite duration
// ===============
// When we've autoreverse on, the repeat count
// doubles
const double nRepeatCount( getRepeatCount() );
const double nEffectiveRepeat( isAutoReverse() ?
2.0*nRepeatCount :
nRepeatCount );
// time (or frame count) elapsed?
if( nEffectiveRepeat <= nT )
{
// okee. done for now. Will not exit right here,
// to give animation the chance to render the last
// frame below
bActivityEnding = true;
// clamp animation to max permissible value
nT = nEffectiveRepeat;
}
}
// need to do auto-reverse?
// ========================
double nRepeats;
double nRelativeSimpleTime;
// TODO(Q3): Refactor this mess
if( isAutoReverse() )
{
// divert active duration into repeat and
// fractional part.
const double nFractionalActiveDuration( modf(nT, &nRepeats) );
// for auto-reverse, map ranges [1,2), [3,4), ...
// to ranges [0,1), [1,2), etc.
if( ((int)nRepeats) % 2 )
{
// we're in an odd range, reverse sweep
nRelativeSimpleTime = 1.0 - nFractionalActiveDuration;
}
else
{
// we're in an even range, pass on as is
nRelativeSimpleTime = nFractionalActiveDuration;
}
// effective repeat count for autoreverse is half of
// the input time's value (each run of an autoreverse
// cycle is half of a repeat)
nRepeats /= 2;
}
else
{
// determine repeat
// ================
// calc simple time and number of repeats from nT
// Now, that's easy, since the fractional part of
// nT gives the relative simple time, and the
// integer part the number of full repeats:
nRelativeSimpleTime = modf(nT, &nRepeats);
// clamp repeats to max permissible value (maRepeats.getValue() - 1.0)
if( isRepeatCountValid() &&
nRepeats >= getRepeatCount() )
{
// Note that this code here only gets
// triggered if maRepeats.getValue() is an
// _integer_. Otherwise, nRepeats will never
// reach nor exceed
// maRepeats.getValue(). Thus, the code below
// does not need to handle cases of fractional
// repeats, and can always assume that a full
// animation run has ended (with
// nRelativeSimpleTime=1.0 for
// non-autoreversed activities).
// with modf, nRelativeSimpleTime will never
// become 1.0, since nRepeats is incremented and
// nRelativeSimpleTime set to 0.0 then.
// For the animation to reach its final value,
// nRepeats must although become
// maRepeats.getValue()-1.0, and
// nRelativeSimpleTime=1.0.
nRelativeSimpleTime = 1.0;
nRepeats -= 1.0;
}
}
// actually perform something
// ==========================
simplePerform( nRelativeSimpleTime,
// nRepeats is already integer-valued
static_cast<sal_uInt32>( nRepeats ) );
// delayed endActivity() call from end condition check
// below. Issued after the simplePerform() call above, to
// give animations the chance to correctly reach the
// animation end value, without spurious bail-outs because
// of isActive() returning false.
if( bActivityEnding )
endActivity();
// one more frame successfully performed
++mnCurrPerformCalls;
return isActive();
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|