1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <math.h>
#include <tools/poly.hxx>
#include <boost/scoped_array.hpp>
#include <sgvspln.hxx>
extern "C" {
/*.pn 277 */
/*.hlAppendix: C - programs*/
/*.hrConstants- and macrodefinitions*/
/*.fe The include file u_const.h should be stored in the directory, */
/*.fe where the compiler searches for include files. */
/*----------------------- FILE u_const.h ---------------------------*/
#define IEEE
/* IEEE - standard for representation of floating-point numbers:
8 byte long floating point numbers with
53 bit mantissa ==> mantissa range: 2^52 different numbers
with 0.1 <= number < 1.0,
1 sign-bit
11 bit exponent ==> exponent range: -1024...+1023
The first line (#define IEEE) should be deleted if the machine
or the compiler does not use floating-point numbers according
to the IEEE standard. In which case also MAXEXPON, MINEXPON (see
below) should be adapted.
*/
#ifdef IEEE /*-------------- if IEEE norm --------------------*/
#define MACH_EPS 2.220446049250313e-016 /* machine precision */
/* IBM-AT: = 2^-52 */
/* MACH_EPS is the smallest positive, by the machine representable
number x, which fulfills the equation: 1.0 + x > 1.0 */
#define MAXROOT 9.48075190810918e+153
#else /*------------------ otherwise--------------------*/
double exp (double);
double atan (double);
double pow (double,double);
double sqrt (double);
double masch() /* calculate MACH_EPS machine independence */
{
double eps = 1.0, x = 2.0, y = 1.0;
while ( y < x )
{ eps *= 0.5;
x = 1.0 + eps;
}
eps *= 2.0;
return (eps);
}
short basis() /* calculate BASE machine independence */
{
double x = 1.0, one = 1.0, b = 1.0;
while ( (x + one) - x == one ) x *= 2.0;
while ( (x + b) == x ) b *= 2.0;
return ( (short) ((x + b) - x) );
}
#define BASIS basis() /* base of number representation */
/* If the machine (the compiler) does not use the IEEE-representation
for floating-point numbers, the next 2 constants should be adapted.
*/
#define MAXEXPON 1023.0 /* largest exponent */
#define MINEXPON -1024.0 /* smallest exponent */
#define MACH_EPS masch()
#define POSMAX pow ((double) BASIS, MAXEXPON)
#define MAXROOT sqrt(POSMAX)
#endif /*-------------- END of ifdef --------------------*/
/* defines for function macros: */
#define abs(X) ((X) >= 0 ? (X) : -(X)) /* absolute number X */
#define sign(X, Y) (Y < 0 ? -abs(X) : abs(X)) /* sign of Y times */
/* abs(X) */
/*-------------------- END of FILE u_const.h -----------------------*/
/*.HL appendix: C - programs*/
/*.HR Systems of equations for tridiagonal matrices*/
/*.FE P 3.7 tridiagonal systems of equations */
/*---------------------- MODULE tridiagonal -----------------------*/
sal_uInt16 TriDiagGS(bool rep, sal_uInt16 n, double* lower,
double* diag, double* upper, double* b)
/*************************/
/* Gaussian methods for */
/* tridiagonal matrices */
/*************************/
/*====================================================================*/
/* */
/* trdiag determines solution x of the system of linear equations */
/* A * x = b with tridiagonal n x n coefficient matrix A, which is */
/* stored in 3 vectors lower, upper and diag as per below: */
/* */
/* ( diag[0] upper[0] 0 0 . . . 0 ) */
/* ( lower[1] diag[1] upper[1] 0 . . . ) */
/* ( 0 lower[2] diag[2] upper[2] 0 . ) */
/* A = ( . 0 lower[3] . . . ) */
/* ( . . . . . 0 ) */
/* ( . . . . . ) */
/* ( . . . upper[n-2] ) */
/* ( 0 . . . 0 lower[n-1] diag[n-1] ) */
/* */
/*====================================================================*/
/* */
/* Usage: */
/* ====== */
/* Mainly for diagonal determinant triangular matrix, as they */
/* occur in Spline-interpolations. */
/* For diagonal dominant matrices always a left-upper row */
/* reduction exists; for non diagonal dominant triangular */
/* matrices we should pull forward the function band, as this */
/* works with row pivot searches, which is numerical more stable.*/
/* */
/*====================================================================*/
/* */
/* Input parameters: */
/* ================ */
/* n dimension of the matrix ( > 1 ) sal_uInt16 n */
/* */
/* lower lower antidiagonal double lower[n] */
/* diag main diagonal double diag[n] */
/* upper upper antidiagonal double upper[n] */
/* */
/* for rep = true lower, diag and upper contain the */
/* triangulation of the start matrix. */
/* */
/* b right side of equation double b[n] */
/* rep = false first call bool rep */
/* = true next call */
/* for the same matrix, */
/* but different b. */
/* */
/* Output parameters: */
/* ================= */
/* b solution vector of the system; double b[n] */
/* the original right side is overwritten */
/* */
/* lower ) contain for rep = false the decomposition of the */
/* diag ) matrix; the original values of the lower and */
/* upper ) diagonals are overwritten */
/* */
/* The determinant of the matrix is for rep = false defined by */
/* determinant A = diag[0] * ... * diag[n-1] */
/* */
/* Return value: */
/* ============= */
/* = 0 all ok */
/* = 1 n < 2 chosen */
/* = 2 triangular decomposition of matrix does not exist */
/* */
/*====================================================================*/
/* */
/* Functions used: */
/* =============== */
/* */
/* From the C library: fabs() */
/* */
/*====================================================================*/
/*.cp 5 */
{
sal_uInt16 i;
short j;
// double fabs(double);
if ( n < 2 ) return(1); /* n at least 2 */
/* if rep = false, */
/* determine the */
/* triangular */
/* decomposition of */
if (!rep) /* matrix and determinant*/
{
for (i = 1; i < n; i++)
{ if ( fabs(diag[i-1]) < MACH_EPS ) /* do not decompose */
return(2); /* if one diag[i] = 0 */
lower[i] /= diag[i-1];
diag[i] -= lower[i] * upper[i-1];
}
}
if ( fabs(diag[n-1]) < MACH_EPS ) return(2);
for (i = 1; i < n; i++) /* forward elimination */
b[i] -= lower[i] * b[i-1];
b[n-1] /= diag[n-1]; /* reverse elimination */
for (j = n-2; j >= 0; j--) {
i=j;
b[i] = ( b[i] - upper[i] * b[i+1] ) / diag[i];
}
return(0);
}
/*----------------------- END OF TRIDIAGONAL ------------------------*/
/*.HL Appendix: C - Programs*/
/*.HRSystems of equations with cyclic tridiagonal matrices*/
/*.FE P 3.8 Systems with cyclic tridiagonal matrices */
/*---------------- Module cyclic tridiagonal -----------------------*/
sal_uInt16 ZyklTriDiagGS(bool rep, sal_uInt16 n, double* lower, double* diag,
double* upper, double* lowrow, double* ricol, double* b)
/******************************/
/* Systems with cyclic */
/* tridiagonal matrices */
/******************************/
/*====================================================================*/
/* */
/* tzdiag determines the solution x of the linear equation system */
/* A * x = b with cyclic tridiagonal n x n coefficient- */
/* matrix A, which is stored in the 5 vectors: lower, upper, diag, */
/* lowrow and ricol as per below: */
/* */
/* ( diag[0] upper[0] 0 0 . . 0 ricol[0] ) */
/* ( lower[1] diag[1] upper[1] 0 . . 0 ) */
/* ( 0 lower[2] diag[2] upper[2] 0 . ) */
/* A = ( . 0 lower[3] . . . . ) */
/* ( . . . . . 0 ) */
/* ( . . . . . ) */
/* ( 0 . . . upper[n-2] ) */
/* ( lowrow[0] 0 . . 0 lower[n-1] diag[n-1] ) */
/* */
/* Memory for lowrow[1],..,lowrow[n-3] und ricol[1],...,ricol[n-3] */
/* should be provided separately, as this should be available to */
/* store the decomposition matrix, which is overwritting */
/* the 5 vectors mentioned. */
/* */
/*====================================================================*/
/* */
/* Usage: */
/* ====== */
/* Predominantly for diagonal dominant cyclic tridiagonal- */
/* matrices as they occur in spline-interpolations. */
/* For diagonal dominant matices only a LU-decomposition exists. */
/* */
/*====================================================================*/
/* */
/* Input parameters: */
/* ================= */
/* n Dimension of the matrix ( > 2 ) sal_uInt16 n */
/* lower lower antidiagonal double lower[n] */
/* diag main diagonal double diag[n] */
/* upper upper antidiagonal double upper[n] */
/* b right side of the system double b[n] */
/* rep = FALSE first call bool rep */
/* = TRUE repeated call */
/* for equal matrix, */
/* but different b. */
/* */
/* Output parameters: */
/* ================== */
/* b solution vector of the system, double b[n] */
/* the original right side is overwritten */
/* */
/* lower ) contain for rep = false the solution of the matrix;*/
/* diag ) the original values of lower and diagonal will be */
/* upper ) overwritten */
/* lowrow ) double lowrow[n-2] */
/* ricol ) double ricol[n-2] */
/* */
/* The determinant of the matrix is for rep = false */
/* det A = diag[0] * ... * diag[n-1] defined . */
/* */
/* Return value: */
/* ============= */
/* = 0 all ok */
/* = 1 n < 3 chosen */
/* = 2 Decomposition matrix does not exist */
/* */
/*====================================================================*/
/* */
/* Used functions: */
/* =============== */
/* */
/* from the C library: fabs() */
/* */
/*====================================================================*/
/*.cp 5 */
{
double temp; // fabs(double);
sal_uInt16 i;
short j;
if ( n < 3 ) return(1);
if (!rep) /* If rep = false, */
{ /* calculate decomposition */
lower[0] = upper[n-1] = 0.0; /* of the matrix. */
if ( fabs (diag[0]) < MACH_EPS ) return(2);
/* Do not decompose if the */
temp = 1.0 / diag[0]; /* value of a diagonal */
upper[0] *= temp; /* element is smaller then */
ricol[0] *= temp; /* MACH_EPS */
for (i = 1; i < n-2; i++)
{ diag[i] -= lower[i] * upper[i-1];
if ( fabs(diag[i]) < MACH_EPS ) return(2);
temp = 1.0 / diag[i];
upper[i] *= temp;
ricol[i] = -lower[i] * ricol[i-1] * temp;
}
diag[n-2] -= lower[n-2] * upper[n-3];
if ( fabs(diag[n-2]) < MACH_EPS ) return(2);
for (i = 1; i < n-2; i++)
lowrow[i] = -lowrow[i-1] * upper[i-1];
lower[n-1] -= lowrow[n-3] * upper[n-3];
upper[n-2] = ( upper[n-2] - lower[n-2] * ricol[n-3] ) / diag[n-2];
for (temp = 0.0, i = 0; i < n-2; i++)
temp -= lowrow[i] * ricol[i];
diag[n-1] += temp - lower[n-1] * upper[n-2];
if ( fabs(diag[n-1]) < MACH_EPS ) return(2);
}
b[0] /= diag[0]; /* forward elimination */
for (i = 1; i < n-1; i++)
b[i] = ( b[i] - b[i-1] * lower[i] ) / diag[i];
for (temp = 0.0, i = 0; i < n-2; i++)
temp -= lowrow[i] * b[i];
b[n-1] = ( b[n-1] + temp - lower[n-1] * b[n-2] ) / diag[n-1];
b[n-2] -= b[n-1] * upper[n-2]; /* backward elimination */
for (j = n-3; j >= 0; j--) {
i=j;
b[i] -= upper[i] * b[i+1] + ricol[i] * b[n-1];
}
return(0);
}
/*------------------ END of CYCLIC TRIDIAGONAL ---------------------*/
} // extern "C"
// Calculates the coefficients of natural cubic splines with n intervals.
sal_uInt16 NaturalSpline(sal_uInt16 n, double* x, double* y,
double Marg0, double MargN,
sal_uInt8 MargCond,
double* b, double* c, double* d)
{
sal_uInt16 i;
boost::scoped_array<double> a;
boost::scoped_array<double> h;
sal_uInt16 error;
if (n<2) return 1;
if ( (MargCond & ~3) ) return 2;
a.reset(new double[n+1]);
h.reset(new double[n+1]);
for (i=0;i<n;i++) {
h[i]=x[i+1]-x[i];
if (h[i]<=0.0) return 1;
}
for (i=0;i<n-1;i++) {
a[i]=3.0*((y[i+2]-y[i+1])/h[i+1]-(y[i+1]-y[i])/h[i]);
b[i]=h[i];
c[i]=h[i+1];
d[i]=2.0*(h[i]+h[i+1]);
}
switch (MargCond) {
case 0: {
if (n==2) {
a[0]=a[0]/3.0;
d[0]=d[0]*0.5;
} else {
a[0] =a[0]*h[1]/(h[0]+h[1]);
a[n-2]=a[n-2]*h[n-2]/(h[n-1]+h[n-2]);
d[0] =d[0]-h[0];
d[n-2]=d[n-2]-h[n-1];
c[0] =c[0]-h[0];
b[n-2]=b[n-2]-h[n-1];
}
}
case 1: {
a[0] =a[0]-1.5*((y[1]-y[0])/h[0]-Marg0);
a[n-2]=a[n-2]-1.5*(MargN-(y[n]-y[n-1])/h[n-1]);
d[0] =d[0]-h[0]*0.5;
d[n-2]=d[n-2]-h[n-1]*0.5;
}
case 2: {
a[0] =a[0]-h[0]*Marg0*0.5;
a[n-2]=a[n-2]-h[n-1]*MargN*0.5;
}
case 3: {
a[0] =a[0]+Marg0*h[0]*h[0]*0.5;
a[n-2]=a[n-2]-MargN*h[n-1]*h[n-1]*0.5;
d[0] =d[0]+h[0];
d[n-2]=d[n-2]+h[n-1];
}
} // switch MargCond
if (n==2) {
c[1]=a[0]/d[0];
} else {
error=TriDiagGS(false,n-1,b,d,c,a.get());
if (error!=0) return error+2;
for (i=0;i<n-1;i++) c[i+1]=a[i];
}
switch (MargCond) {
case 0: {
if (n==2) {
c[2]=c[1];
c[0]=c[1];
} else {
c[0]=c[1]+h[0]*(c[1]-c[2])/h[1];
c[n]=c[n-1]+h[n-1]*(c[n-1]-c[n-2])/h[n-2];
}
}
case 1: {
c[0]=1.5*((y[1]-y[0])/h[0]-Marg0);
c[0]=(c[0]-c[1]*h[0]*0.5)/h[0];
c[n]=1.5*((y[n]-y[n-1])/h[n-1]-MargN);
c[n]=(c[n]-c[n-1]*h[n-1]*0.5)/h[n-1];
}
case 2: {
c[0]=Marg0*0.5;
c[n]=MargN*0.5;
}
case 3: {
c[0]=c[1]-Marg0*h[0]*0.5;
c[n]=c[n-1]+MargN*h[n-1]*0.5;
}
} // switch MargCond
for (i=0;i<n;i++) {
b[i]=(y[i+1]-y[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0;
d[i]=(c[i+1]-c[i])/(3.0*h[i]);
}
return 0;
}
// calculates the coefficients of periodical cubic splines with n intervals.
sal_uInt16 PeriodicSpline(sal_uInt16 n, double* x, double* y,
double* b, double* c, double* d)
{ // array dimensions should range from [0..n]!
sal_uInt16 Error;
sal_uInt16 i,im1,nm1; //integer
double hr,hl;
boost::scoped_array<double> a;
boost::scoped_array<double> lowrow;
boost::scoped_array<double> ricol;
if (n<2) return 4;
nm1=n-1;
for (i=0;i<=nm1;i++) if (x[i+1]<=x[i]) return 2; // should be strictly monotonically decreasing!
if (y[n]!=y[0]) return 3; // begin and end should be equal!
a.reset(new double[n+1]);
lowrow.reset(new double[n+1]);
ricol.reset(new double[n+1]);
if (n==2) {
c[1]=3.0*((y[2]-y[1])/(x[2]-x[1]));
c[1]=c[1]-3.0*((y[i]-y[0])/(x[1]-x[0]));
c[1]=c[1]/(x[2]-x[0]);
c[2]=-c[1];
} else {
for (i=1;i<=nm1;i++) {
im1=i-1;
hl=x[i]-x[im1];
hr=x[i+1]-x[i];
b[im1]=hl;
d[im1]=2.0*(hl+hr);
c[im1]=hr;
a[im1]=3.0*((y[i+1]-y[i])/hr-(y[i]-y[im1])/hl);
}
hl=x[n]-x[nm1];
hr=x[1]-x[0];
b[nm1]=hl;
d[nm1]=2.0*(hl+hr);
lowrow[0]=hr;
ricol[0]=hr;
a[nm1]=3.0*((y[1]-y[0])/hr-(y[n]-y[nm1])/hl);
Error=ZyklTriDiagGS(false,n,b,d,c,lowrow.get(),ricol.get(),a.get());
if ( Error != 0 )
{
return(Error+4);
}
for (i=0;i<=nm1;i++) c[i+1]=a[i];
}
c[0]=c[n];
for (i=0;i<=nm1;i++) {
hl=x[i+1]-x[i];
b[i]=(y[i+1]-y[i])/hl;
b[i]=b[i]-hl*(c[i+1]+2.0*c[i])/3.0;
d[i]=(c[i+1]-c[i])/hl/3.0;
}
return 0;
}
// calculate the coefficients of parametric natural of periodical cubic splines
// with n intervals
sal_uInt16 ParaSpline(sal_uInt16 n, double* x, double* y, sal_uInt8 MargCond,
double Marg01, double Marg02,
double MargN1, double MargN2,
bool CondT, double* T,
double* bx, double* cx, double* dx,
double* by, double* cy, double* dy)
{
sal_uInt16 Error;
sal_uInt16 i;
double deltX,deltY,delt,
alphX = 0,alphY = 0,
betX = 0,betY = 0;
if (n<2) return 1;
if ((MargCond & ~3) && (MargCond != 4)) return 2; // invalid boundary condition
if (!CondT) {
T[0]=0.0;
for (i=0;i<n;i++) {
deltX=x[i+1]-x[i]; deltY=y[i+1]-y[i];
delt =deltX*deltX+deltY*deltY;
if (delt<=0.0) return 3; // two identical adjacent points!
T[i+1]=T[i]+sqrt(delt);
}
}
switch (MargCond) {
case 0: break;
case 1: case 2: {
alphX=Marg01; betX=MargN1;
alphY=Marg02; betY=MargN2;
} break;
case 3: {
if (x[n]!=x[0]) return 3;
if (y[n]!=y[0]) return 4;
} break;
case 4: {
if (abs(Marg01)>=MAXROOT) {
alphX=0.0;
alphY=sign(1.0,y[1]-y[0]);
} else {
alphX=sign(sqrt(1.0/(1.0+Marg01*Marg01)),x[1]-x[0]);
alphY=alphX*Marg01;
}
if (abs(MargN1)>=MAXROOT) {
betX=0.0;
betY=sign(1.0,y[n]-y[n-1]);
} else {
betX=sign(sqrt(1.0/(1.0+MargN1*MargN1)),x[n]-x[n-1]);
betY=betX*MargN1;
}
}
} // switch MargCond
if (MargCond==3) {
Error=PeriodicSpline(n,T,x,bx,cx,dx);
if (Error!=0) return(Error+4);
Error=PeriodicSpline(n,T,y,by,cy,dy);
if (Error!=0) return(Error+10);
} else {
Error=NaturalSpline(n,T,x,alphX,betX,MargCond,bx,cx,dx);
if (Error!=0) return(Error+4);
Error=NaturalSpline(n,T,y,alphY,betY,MargCond,by,cy,dy);
if (Error!=0) return(Error+9);
}
return 0;
}
bool CalcSpline(Polygon& rPoly, bool Periodic, sal_uInt16& n,
double*& ax, double*& ay, double*& bx, double*& by,
double*& cx, double*& cy, double*& dx, double*& dy, double*& T)
{
sal_uInt8 Marg;
double Marg01;
double MargN1,MargN2;
sal_uInt16 i;
Point P0(-32768,-32768);
Point Pt;
n=rPoly.GetSize();
ax=new double[rPoly.GetSize()+2];
ay=new double[rPoly.GetSize()+2];
n=0;
for (i=0;i<rPoly.GetSize();i++) {
Pt=rPoly.GetPoint(i);
if (i==0 || Pt!=P0) {
ax[n]=Pt.X();
ay[n]=Pt.Y();
n++;
P0=Pt;
}
}
if (Periodic) {
Marg=3;
ax[n]=ax[0];
ay[n]=ay[0];
n++;
} else {
Marg=2;
}
bx=new double[n+1];
by=new double[n+1];
cx=new double[n+1];
cy=new double[n+1];
dx=new double[n+1];
dy=new double[n+1];
T =new double[n+1];
Marg01=0.0;
MargN1=0.0;
MargN2=0.0;
if (n>0) n--; // correct n (number of partial polynoms)
bool bRet = false;
if ( ( Marg == 3 && n >= 3 ) || ( Marg == 2 && n >= 2 ) )
{
bRet = ParaSpline(n,ax,ay,Marg,Marg01,Marg01,MargN1,MargN2,false,T,bx,cx,dx,by,cy,dy) == 0;
}
if ( !bRet )
{
delete[] ax;
delete[] ay;
delete[] bx;
delete[] by;
delete[] cx;
delete[] cy;
delete[] dx;
delete[] dy;
delete[] T;
n=0;
}
return bRet;
}
bool Spline2Poly(Polygon& rSpln, bool Periodic, Polygon& rPoly)
{
short MinKoord=-32000; // to prevent
short MaxKoord=32000; // overflows
double* ax; // coefficients of the polynoms
double* ay;
double* bx;
double* by;
double* cx;
double* cy;
double* dx;
double* dy;
double* tv;
double Step; // stepsize for t
double dt1,dt2,dt3; // delta t, y, ^3
double t;
bool bEnde; // partial polynom ended?
sal_uInt16 n; // number of partial polynoms to draw
sal_uInt16 i; // actual partial polynom
bool bOk; // all still ok?
sal_uInt16 PolyMax=16380; // max number of polygon points
long x,y;
bOk=CalcSpline(rSpln,Periodic,n,ax,ay,bx,by,cx,cy,dx,dy,tv);
if (bOk) {
Step =10;
rPoly.SetSize(1);
rPoly.SetPoint(Point(short(ax[0]),short(ay[0])),0); // first point
i=0;
while (i<n) { // draw n partial polynoms
t=tv[i]+Step;
bEnde=false;
while (!bEnde) { // extrapolate one partial polynom
bEnde=t>=tv[i+1];
if (bEnde) t=tv[i+1];
dt1=t-tv[i]; dt2=dt1*dt1; dt3=dt2*dt1;
x=long(ax[i]+bx[i]*dt1+cx[i]*dt2+dx[i]*dt3);
y=long(ay[i]+by[i]*dt1+cy[i]*dt2+dy[i]*dt3);
if (x<MinKoord) x=MinKoord; if (x>MaxKoord) x=MaxKoord;
if (y<MinKoord) y=MinKoord; if (y>MaxKoord) y=MaxKoord;
if (rPoly.GetSize()<PolyMax) {
rPoly.SetSize(rPoly.GetSize()+1);
rPoly.SetPoint(Point(short(x),short(y)),rPoly.GetSize()-1);
} else {
bOk=false; // error: polygon becomes to large
}
t=t+Step;
} // end of partial polynom
i++; // next partial polynom
}
delete[] ax;
delete[] ay;
delete[] bx;
delete[] by;
delete[] cx;
delete[] cy;
delete[] dx;
delete[] dy;
delete[] tv;
return bOk;
} // end of if (bOk)
rPoly.SetSize(0);
return false;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|