1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/*
* Timers are evil beasts across platforms...
*/
#include <test/bootstrapfixture.hxx>
#include <osl/thread.hxx>
#include <salhelper/thread.hxx>
#include <chrono>
#include <vcl/timer.hxx>
#include <vcl/idle.hxx>
#include <vcl/svapp.hxx>
#include "svdata.hxx"
#include "salinst.hxx"
// #define TEST_WATCHDOG
// Enables timer tests that appear to provoke windows under load unduly.
//#define TEST_TIMERPRECISION
/// Avoid our timer tests just wedging the build if they fail.
class WatchDog : public osl::Thread
{
sal_Int32 mnSeconds;
public:
explicit WatchDog(sal_Int32 nSeconds) :
Thread(),
mnSeconds( nSeconds )
{
create();
}
virtual void SAL_CALL run() override
{
osl::Thread::wait( std::chrono::seconds(mnSeconds) );
fprintf(stderr, "ERROR: WatchDog timer thread expired, failing the test!\n");
fflush(stderr);
CPPUNIT_ASSERT_MESSAGE("watchdog triggered", false);
}
};
static WatchDog aWatchDog( 120 ); // random high number in secs
class TimerTest : public test::BootstrapFixture
{
public:
TimerTest() : BootstrapFixture(true, false) {}
void testIdleMainloop();
void testIdle();
#ifdef TEST_WATCHDOG
void testWatchdog();
#endif
void testDurations();
#ifdef TEST_TIMERPRECISION
void testAutoTimer();
void testMultiAutoTimers();
#endif
void testRecursiveTimer();
void testSlowTimerCallback();
CPPUNIT_TEST_SUITE(TimerTest);
CPPUNIT_TEST(testIdle);
CPPUNIT_TEST(testIdleMainloop);
#ifdef TEST_WATCHDOG
CPPUNIT_TEST(testWatchdog);
#endif
CPPUNIT_TEST(testDurations);
#ifdef TEST_TIMERPRECISION
CPPUNIT_TEST(testAutoTimer);
CPPUNIT_TEST(testMultiAutoTimers);
#endif
CPPUNIT_TEST(testRecursiveTimer);
CPPUNIT_TEST(testSlowTimerCallback);
CPPUNIT_TEST_SUITE_END();
};
#ifdef TEST_WATCHDOG
void TimerTest::testWatchdog()
{
// out-wait the watchdog.
osl::Thread::wait( std::chrono::seconds(12) );
}
#endif
class IdleBool : public Idle
{
bool &mrBool;
public:
explicit IdleBool( bool &rBool ) :
Idle(), mrBool( rBool )
{
SetPriority( SchedulerPriority::LOWEST );
Start();
mrBool = false;
}
virtual void Invoke() override
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testIdle()
{
bool bTriggered = false;
IdleBool aTest( bTriggered );
Scheduler::ProcessTaskScheduling(false);
CPPUNIT_ASSERT_MESSAGE("idle triggered", bTriggered);
}
// tdf#91727
void TimerTest::testIdleMainloop()
{
#ifndef _WIN32
bool bTriggered = false;
IdleBool aTest( bTriggered );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while (!bTriggered)
{
ImplSVData* pSVData = ImplGetSVData();
// can't test this via Application::Yield since this
// also processes all tasks directly via the scheduler.
pSVData->maAppData.mnDispatchLevel++;
pSVData->mpDefInst->DoYield(true, false, 0);
pSVData->maAppData.mnDispatchLevel--;
}
CPPUNIT_ASSERT_MESSAGE("mainloop idle triggered", bTriggered);
#endif
}
class TimerBool : public Timer
{
bool &mrBool;
public:
TimerBool( sal_uLong nMS, bool &rBool ) :
Timer(), mrBool( rBool )
{
SetTimeout( nMS );
Start();
mrBool = false;
}
virtual void Invoke() override
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testDurations()
{
static const sal_uLong aDurations[] = { 0, 1, 500, 1000 };
for (size_t i = 0; i < SAL_N_ELEMENTS( aDurations ); i++)
{
bool bDone = false;
TimerBool aTimer( aDurations[i], bDone );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while( !bDone )
{
Application::Yield();
}
}
}
class AutoTimerCount : public AutoTimer
{
sal_Int32 &mrCount;
public:
AutoTimerCount( sal_uLong nMS, sal_Int32 &rCount ) :
AutoTimer(), mrCount( rCount )
{
SetTimeout( nMS );
Start();
mrCount = 0;
}
virtual void Invoke() override
{
mrCount++;
}
};
#ifdef TEST_TIMERPRECISION
void TimerTest::testAutoTimer()
{
const sal_Int32 nDurationMs = 30;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
sal_Int32 nCount = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
const auto start = std::chrono::high_resolution_clock::now();
nCount = 0;
AutoTimerCount aCount(nDurationMs, nCount);
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
double dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed
<< "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2))
{
// Success.
return;
}
}
CPPUNIT_FAIL(msg.str().c_str());
}
void TimerTest::testMultiAutoTimers()
{
// The behavior of the timers change drastically
// when multiple timers are present.
// The worst, in my tests, is when two
// timers with 1ms period exist with a
// third of much longer period.
const sal_Int32 nDurationMsX = 5;
const sal_Int32 nDurationMsY = 10;
const sal_Int32 nDurationMs = 40;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
const double expX = (exp / nDurationMsX);
const double expY = (exp / nDurationMsY);
sal_Int32 nCountX = 0;
sal_Int32 nCountY = 0;
sal_Int32 nCount = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
nCountX = 0;
nCountY = 0;
nCount = 0;
const auto start = std::chrono::high_resolution_clock::now();
AutoTimerCount aCountX(nDurationMsX, nCountX);
AutoTimerCount aCountY(nDurationMsY, nCountY);
AutoTimerCount aCount(nDurationMs, nCount);
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle nCount
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
double dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed << "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms, nCount: " << nCount
<< " (" << nEventsCount << "), nCountX: " << nCountX
<< " (" << expX << "), nCountY: " << nCountY
<< " (" << expY << ")." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2) &&
nCountX >= (expX * 0.8) && nCountX <= (expX * 1.2) &&
nCountY >= (expY * 0.8) && nCountY <= (expY * 1.2))
{
// Success.
return;
}
}
CPPUNIT_FAIL(msg.str().c_str());
}
#endif // TEST_TIMERPRECISION
class YieldTimer : public Timer
{
public:
explicit YieldTimer( sal_uLong nMS ) : Timer()
{
SetTimeout( nMS );
Start();
}
virtual void Invoke() override
{
for (int i = 0; i < 100; i++)
Application::Yield();
}
};
void TimerTest::testRecursiveTimer()
{
sal_Int32 nCount = 0;
YieldTimer aCount(5);
AutoTimerCount aCountUp( 3, nCount );
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 20)
Application::Yield();
}
class SlowCallbackTimer : public Timer
{
bool &mbSlow;
public:
SlowCallbackTimer( sal_uLong nMS, bool &bBeenSlow ) :
Timer(), mbSlow( bBeenSlow )
{
SetTimeout( nMS );
Start();
mbSlow = false;
}
virtual void Invoke() override
{
osl::Thread::wait( std::chrono::seconds(1) );
mbSlow = true;
}
};
void TimerTest::testSlowTimerCallback()
{
bool bBeenSlow = false;
sal_Int32 nCount = 0;
AutoTimerCount aHighFreq(1, nCount);
SlowCallbackTimer aSlow(250, bBeenSlow);
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bBeenSlow
while (!bBeenSlow)
Application::Yield();
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 200)
Application::Yield();
}
CPPUNIT_TEST_SUITE_REGISTRATION(TimerTest);
CPPUNIT_PLUGIN_IMPLEMENT();
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|