1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <algorithm>
#include <tools/diagnose_ex.h>
#include "activitybase.hxx"
namespace slideshow::internal
{
// TODO(P1): Elide some virtual function calls, by templifying this
// static hierarchy
ActivityBase::ActivityBase( const ActivityParameters& rParms ) :
mpEndEvent( rParms.mrEndEvent ),
mrEventQueue( rParms.mrEventQueue ),
mpShape(),
mpAttributeLayer(),
maRepeats( rParms.mrRepeats ),
mnAccelerationFraction( rParms.mnAccelerationFraction ),
mnDecelerationFraction( rParms.mnDecelerationFraction ),
mbAutoReverse( rParms.mbAutoReverse ),
mbFirstPerformCall( true ),
mbIsActive( true ) {}
void ActivityBase::dispose()
{
// deactivate
mbIsActive = false;
// dispose event
if( mpEndEvent )
mpEndEvent->dispose();
// release references
mpEndEvent.reset();
mpShape.reset();
mpAttributeLayer.reset();
}
double ActivityBase::calcTimeLag() const
{
// TODO(Q1): implement different init process!
if (isActive() && mbFirstPerformCall)
{
mbFirstPerformCall = false;
// notify derived classes that we're
// starting now
const_cast<ActivityBase *>(this)->startAnimation();
}
return 0.0;
}
bool ActivityBase::perform()
{
// still active?
if( !isActive() )
return false; // no, early exit.
OSL_ASSERT( ! mbFirstPerformCall );
return true;
}
bool ActivityBase::isActive() const
{
return mbIsActive;
}
void ActivityBase::setTargets( const AnimatableShapeSharedPtr& rShape,
const ShapeAttributeLayerSharedPtr& rAttrLayer )
{
ENSURE_OR_THROW( rShape,
"ActivityBase::setTargets(): Invalid shape" );
ENSURE_OR_THROW( rAttrLayer,
"ActivityBase::setTargets(): Invalid attribute layer" );
mpShape = rShape;
mpAttributeLayer = rAttrLayer;
}
void ActivityBase::endActivity()
{
// this is a regular activity end
mbIsActive = false;
// Activity is ending, queue event, then
if( mpEndEvent )
mrEventQueue.addEvent( mpEndEvent );
// release references
mpEndEvent.reset();
}
void ActivityBase::dequeued()
{
// xxx todo:
// // ignored here, if we're still active. Discrete
// // activities are dequeued after every perform() call,
// // thus, the call is only significant when isActive() ==
// // false.
if( !isActive() )
endAnimation();
}
void ActivityBase::end()
{
if (!isActive() || isDisposed())
return;
// assure animation is started:
if (mbFirstPerformCall) {
mbFirstPerformCall = false;
// notify derived classes that we're starting now
startAnimation();
}
performEnd(); // calling private virtual
endAnimation();
endActivity();
}
double ActivityBase::calcAcceleratedTime( double nT ) const
{
// Handle acceleration/deceleration
// ================================
// clamp nT to permissible [0,1] range
nT = std::clamp( nT, 0.0, 1.0 );
// take acceleration/deceleration into account. if the sum
// of mnAccelerationFraction and mnDecelerationFraction
// exceeds 1.0, ignore both (that's according to SMIL spec)
if( (mnAccelerationFraction > 0.0 ||
mnDecelerationFraction > 0.0) &&
mnAccelerationFraction + mnDecelerationFraction <= 1.0 )
{
/*
// calc accelerated/decelerated time.
// We have three intervals:
// 1 [0,a]
// 2 [a,d]
// 3 [d,1] (with a and d being acceleration/deceleration
// fraction, resp.)
// The change rate during interval 1 is constantly
// increasing, reaching 1 at a. It then stays at 1,
// starting a linear decrease at d, ending with 0 at
// time 1. The integral of this function is the
// required new time nT'.
// As we arbitrarily assumed 1 as the upper value of
// the change rate, the integral must be normalized to
// reach nT'=1 at the end of the interval. This
// normalization constant is:
// c = 1 - 0.5a - 0.5d
// The integral itself then amounts to:
// 0.5 nT^2 / a + (nT-a) + (nT - 0.5 nT^2 / d)
// (where each of the three summands correspond to the
// three intervals above, and are applied only if nT
// has reached the corresponding interval)
// The graph of the change rate is a trapezoid:
// |
// 1| /--------------\
// | / \
// | / \
// | / \
// -----------------------------
// 0 a d 1
//*/
const double nC( 1.0 - 0.5*mnAccelerationFraction - 0.5*mnDecelerationFraction );
// this variable accumulates the new time value
double nTPrime(0.0);
if( nT < mnAccelerationFraction )
{
nTPrime += 0.5*nT*nT/mnAccelerationFraction; // partial first interval
}
else
{
nTPrime += 0.5*mnAccelerationFraction; // full first interval
if( nT <= 1.0-mnDecelerationFraction )
{
nTPrime += nT-mnAccelerationFraction; // partial second interval
}
else
{
nTPrime += 1.0 - mnAccelerationFraction - mnDecelerationFraction; // full second interval
const double nTRelative( nT - 1.0 + mnDecelerationFraction );
nTPrime += nTRelative - 0.5*nTRelative*nTRelative / mnDecelerationFraction;
}
}
// normalize, and assign to work variable
nT = nTPrime / nC;
}
return nT;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|