1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <malloc.h>
#include <rtl/alloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <com/sun/star/uno/Exception.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>
#include <bridge.hxx>
#include <types.hxx>
#include <unointerfaceproxy.hxx>
#include <vtables.hxx>
#include "share.hxx"
#include <exception>
#include <stdio.h>
#include <string.h>
#include <typeinfo>
/*
* Based on http://gcc.gnu.org/PR41443
* References to __SOFTFP__ are incorrect for EABI; the __SOFTFP__ code
* should be used for *soft-float ABI* whether or not VFP is enabled,
* and __SOFTFP__ does specifically mean soft-float not soft-float ABI.
*
* Changing the conditionals to __SOFTFP__ || __ARM_EABI__ then
* -mfloat-abi=softfp should work. -mfloat-abi=hard won't; that would
* need both a new macro to identify the hard-VFP ABI.
*/
#if !defined(__ARM_EABI__) && !defined(__SOFTFP__)
#error Not Implemented
/*
some possibly handy code to detect that we have VFP registers
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <elf.h>
#define HWCAP_ARM_VFP 64
int hasVFP()
{
int fd = open ("/proc/self/auxv", O_RDONLY);
if (fd == -1)
return -1;
int ret = -1;
Elf32_auxv_t buf[128];
ssize_t n;
while ((ret == -1) && ((n = read(fd, buf, sizeof (buf))) > 0))
{
for (int i = 0; i < 128; ++i)
{
if (buf[i].a_type == AT_HWCAP)
{
ret = (buf[i].a_un.a_val & HWCAP_ARM_VFP) ? true : false;
break;
}
else if (buf[i].a_type == AT_NULL)
{
ret = -2;
break;
}
}
}
close (fd);
return ret;
}
#endif
using namespace ::com::sun::star::uno;
namespace arm
{
static bool is_complex_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * t = nullptr;
TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
bool b = is_complex_struct(t);
TYPELIB_DANGER_RELEASE(t);
if (b) {
return true;
}
}
else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
return true;
}
if (p->pBaseTypeDescription != nullptr)
return is_complex_struct(&p->pBaseTypeDescription->aBase);
return false;
}
#ifdef __ARM_PCS_VFP
static bool is_float_only_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_FLOAT &&
p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_DOUBLE)
return false;
}
return true;
}
#endif
bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef )
{
if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
return false;
else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * pTypeDescr = nullptr;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
//A Composite Type not larger than 4 bytes is returned in r0
bool bRet = pTypeDescr->nSize > 4 || is_complex_struct(pTypeDescr);
#ifdef __ARM_PCS_VFP
// In the VFP ABI, structs with only float/double values that fit in
// 16 bytes are returned in registers
if( pTypeDescr->nSize <= 16 && is_float_only_struct(pTypeDescr))
bRet = false;
#endif
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
return true;
}
}
static void MapReturn(sal_uInt32 r0, sal_uInt32 r1, typelib_TypeDescriptionReference * pReturnType, sal_uInt32* pRegisterReturn)
{
switch( pReturnType->eTypeClass )
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
pRegisterReturn[1] = r1;
[[fallthrough]];
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
pRegisterReturn[0] = r0;
break;
case typelib_TypeClass_FLOAT:
#if !defined(__ARM_PCS_VFP) && (defined(__ARM_EABI__) || defined(__SOFTFP__))
pRegisterReturn[0] = r0;
#else
#if defined __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
register float fret asm("s0");
*reinterpret_cast<float *>(pRegisterReturn) = fret;
#if defined __clang__
#pragma clang diagnostic pop
#endif
#endif
break;
case typelib_TypeClass_DOUBLE:
#if !defined(__ARM_PCS_VFP) && (defined(__ARM_EABI__) || defined(__SOFTFP__))
pRegisterReturn[1] = r1;
pRegisterReturn[0] = r0;
#else
#if defined __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
register double dret asm("d0");
*reinterpret_cast<double *>(pRegisterReturn) = dret;
#if defined __clang__
#pragma clang diagnostic pop
#endif
#endif
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
if (!arm::return_in_hidden_param(pReturnType))
pRegisterReturn[0] = r0;
break;
}
default:
break;
}
}
namespace
{
void callVirtualMethod(
void * pThis,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeDescriptionReference * pReturnType,
sal_uInt32 *pStack,
sal_uInt32 nStack,
sal_uInt32 *pGPR,
sal_uInt32 nGPR,
double *pFPR) __attribute__((noinline));
void callVirtualMethod(
void * pThis,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeDescriptionReference * pReturnType,
sal_uInt32 *pStack,
sal_uInt32 nStack,
sal_uInt32 *pGPR,
sal_uInt32 nGPR,
double *pFPR)
{
// never called
if (! pThis)
CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something
if ( nStack )
{
// 8-bytes aligned
sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 8;
sal_uInt32 *stack = static_cast<sal_uInt32 *>(__builtin_alloca( nStackBytes ));
memcpy( stack, pStack, nStackBytes );
}
// Should not happen, but...
if ( nGPR > arm::MAX_GPR_REGS )
nGPR = arm::MAX_GPR_REGS;
sal_uInt32 pMethod = *static_cast<sal_uInt32 *>(pThis);
pMethod += 4 * nVtableIndex;
pMethod = *reinterpret_cast<sal_uInt32 *>(pMethod);
//Return registers
sal_uInt32 r0;
sal_uInt32 r1;
__asm__ __volatile__ (
//Fill in general purpose register arguments
"ldr r4, %[pgpr]\n\t"
"ldmia r4, {r0-r3}\n\t"
#ifdef __ARM_PCS_VFP
//Fill in VFP register arguments as double precision values
"ldr r4, %[pfpr]\n\t"
"vldmia r4, {d0-d7}\n\t"
#endif
//Make the call
"ldr r5, %[pmethod]\n\t"
#ifndef __ARM_ARCH_4T__
"blx r5\n\t"
#else
"mov lr, pc ; bx r5\n\t"
#endif
//Fill in return values
"mov %[r0], r0\n\t"
"mov %[r1], r1\n\t"
: [r0]"=r" (r0), [r1]"=r" (r1)
: [pmethod]"m" (pMethod), [pgpr]"m" (pGPR), [pfpr]"m" (pFPR)
: "r0", "r1", "r2", "r3", "r4", "r5");
MapReturn(r0, r1, pReturnType, static_cast<sal_uInt32*>(pRegisterReturn));
}
}
#define INSERT_INT32( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<const sal_uInt32*>( pSV ); \
else \
*pDS++ = *reinterpret_cast<const sal_uInt32*>( pSV );
#ifdef __ARM_EABI__
#define INSERT_INT64( pSV, nr, pGPR, pDS, pStart ) \
if ( (nr < arm::MAX_GPR_REGS) && (nr % 2) ) \
{ \
++nr; \
} \
if ( nr < arm::MAX_GPR_REGS ) \
{ \
pGPR[nr++] = *static_cast<const sal_uInt32 *>( pSV ); \
pGPR[nr++] = *(static_cast<const sal_uInt32 *>( pSV ) + 1); \
} \
else \
{ \
if ( (pDS - pStart) % 2) \
{ \
++pDS; \
} \
*pDS++ = static_cast<sal_uInt32 *>( pSV )[0]; \
*pDS++ = static_cast<sal_uInt32 *>( pSV )[1]; \
}
#else
#define INSERT_INT64( pSV, nr, pGPR, pDS, pStart ) \
INSERT_INT32( pSV, nr, pGPR, pDS ) \
INSERT_INT32( ((sal_uInt32*)pSV)+1, nr, pGPR, pDS )
#endif
#ifdef __ARM_PCS_VFP
// Since single and double arguments share the same register bank the filling of the
// registers is not always linear. Single values go to the first available single register,
// while doubles need to have an 8 byte alignment, so only go into double registers starting
// at every other single register. For ex a float, double, float sequence will fill registers
// s0, d1, and s1, actually corresponding to the linear order s0,s1, d1.
//
// These use the single/double register array and counters and ignore the pGPR argument
// nSR and nDR are the number of single and double precision registers that are no longer
// available
#define INSERT_FLOAT( pSV, nr, pGPR, pDS ) \
if (nSR % 2 == 0) {\
nSR = 2*nDR; \
}\
if ( nSR < arm::MAX_FPR_REGS*2 ) {\
pSPR[nSR++] = *static_cast<float const *>( pSV ); \
if ((nSR % 2 == 1) && (nSR > 2*nDR)) {\
nDR++; \
}\
}\
else \
{\
*pDS++ = *static_cast<float const *>( pSV );\
}
#define INSERT_DOUBLE( pSV, nr, pGPR, pDS, pStart ) \
if ( nDR < arm::MAX_FPR_REGS ) { \
pFPR[nDR++] = *static_cast<double const *>( pSV ); \
}\
else\
{\
if ( (pDS - pStart) % 2) \
{ \
++pDS; \
} \
*reinterpret_cast<double *>(pDS) = *static_cast<double const *>( pSV );\
pDS += 2;\
}
#else
#define INSERT_FLOAT( pSV, nr, pFPR, pDS ) \
INSERT_INT32( pSV, nr, pGPR, pDS )
#define INSERT_DOUBLE( pSV, nr, pFPR, pDS, pStart ) \
INSERT_INT64( pSV, nr, pGPR, pDS, pStart )
#endif
#define INSERT_INT16( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *static_cast<sal_uInt16 const *>( pSV ); \
else \
*pDS++ = *static_cast<sal_uInt16 const *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *static_cast<sal_uInt8 const *>( pSV ); \
else \
*pDS++ = *static_cast<sal_uInt8 const *>( pSV );
namespace {
void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
sal_uInt32 * pStack = static_cast<sal_uInt32 *>(__builtin_alloca(
sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ));
sal_uInt32 * pStackStart = pStack;
sal_uInt32 pGPR[arm::MAX_GPR_REGS];
sal_uInt32 nGPR = 0;
// storage and counters for single and double precision VFP registers
double pFPR[arm::MAX_FPR_REGS];
#ifdef __ARM_PCS_VFP
sal_uInt32 nDR = 0;
float *pSPR = reinterpret_cast< float *>(&pFPR);
sal_uInt32 nSR = 0;
#endif
// return
typelib_TypeDescription * pReturnTypeDescr = nullptr;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
assert(pReturnTypeDescr);
void * pCppReturn = nullptr; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
bool bSimpleReturn = !arm::return_in_hidden_param( pReturnTypeRef );
if (bSimpleReturn)
pCppReturn = pUnoReturn; // direct way for simple types
else
{
// complex return via ptr
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? __builtin_alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
INSERT_INT32( &pCppReturn, nGPR, pGPR, pStack );
}
}
// push this
void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI())
+ aVtableSlot.offset;
INSERT_INT32( &pAdjustedThisPtr, nGPR, pGPR, pStack );
// stack space
static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!");
// args
void ** pCppArgs = static_cast<void **>(alloca( 3 * sizeof(void *) * nParams ));
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = reinterpret_cast<sal_Int32 *>(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = reinterpret_cast<typelib_TypeDescription **>(pCppArgs + (2 * nParams));
sal_Int32 nTempIndices = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = nullptr;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
// uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos],
uno_copyAndConvertData( pCppArgs[nPos] = alloca(8), pUnoArgs[nPos],
pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "hyper is %p\n", pCppArgs[nPos]);
#endif
INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "long is %p\n", pCppArgs[nPos]);
#endif
INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_FLOAT:
INSERT_FLOAT( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_DOUBLE:
INSERT_DOUBLE( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT32( &(pCppArgs[nPos]), nGPR, pGPR, pStack );
}
}
try
{
try {
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeRef,
pStackStart,
(pStack - pStackStart),
pGPR, nGPR,
pFPR);
} catch (css::uno::Exception &) {
throw;
} catch (std::exception & e) {
throw css::uno::RuntimeException(
"C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
+ o3tl::runtimeToOUString(e.what()));
} catch (...) {
throw css::uno::RuntimeException("C++ code threw unknown exception");
}
// NO exception occurred...
*ppUnoExc = nullptr;
// reconvert temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, nullptr ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges::cpp_uno::shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
#if OSL_DEBUG_LEVEL > 0
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
#endif
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert(nMemberPos < pTypeDescr->nAllMembers);
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>
(pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>(pMemberDescr)->pAttributeTypeRef,
0, nullptr, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>(pMemberDescr)->pAttributeTypeRef;
aParam.bIn = true;
aParam.bOut = false;
typelib_TypeDescriptionReference * pReturnTypeRef = nullptr;
OUString aVoidName("void");
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1;
cpp_call(
pThis, aVtableSlot, // get, then set method
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert(nMemberPos < pTypeDescr->nAllMembers);
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>
(pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = nullptr;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = nullptr;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = nullptr;
TYPELIB_DANGER_GET( &pTD, static_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = nullptr;
(*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)(
pThis->getBridge()->getUnoEnv(),
reinterpret_cast<void **>(&pInterface), pThis->oid.pData, reinterpret_cast<typelib_InterfaceTypeDescription *>(pTD) );
if (pInterface)
{
::uno_any_construct(
static_cast< uno_Any * >( pReturn ),
&pInterface, pTD, nullptr );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = nullptr;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} [[fallthrough]]; // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>(pMemberDescr)->pReturnTypeRef,
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>(pMemberDescr)->nParams,
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>(pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
"illegal member type description!",
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), nullptr );
}
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|