1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include <typelib/typedescription.hxx>
#include "types.hxx"
#include "abi.hxx"
#include <stdio.h>
#include <cstring>
//#define BRIDGE_DEBUG
namespace abi_riscv64
{
/*
F: floating point reg
G: general purpose reg
*/
enum class ReturnKind
{
FF_Align4,
FF_Align8,
FG_Align4,
FG_Align8,
GF_Align4,
GF_Align8,
DEFAULT
};
void countnGreg(sal_Int32& nGreg, sal_Int32& nFreg, bool& firstIsGreg, sal_Int32& align,
const typelib_CompoundTypeDescription* pTypeDescr)
{
for (int i = 0; i < pTypeDescr->nMembers; i++)
{
typelib_TypeDescriptionReference* pTypeInStruct = pTypeDescr->ppTypeRefs[i];
switch (pTypeInStruct->eTypeClass)
{
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
typelib_TypeDescription* childTypeDescr = nullptr;
TYPELIB_DANGER_GET(&childTypeDescr, pTypeInStruct);
countnGreg(
nGreg, nFreg, firstIsGreg, align,
reinterpret_cast<typelib_CompoundTypeDescription const*>(childTypeDescr));
TYPELIB_DANGER_RELEASE(childTypeDescr);
}
break;
case typelib_TypeClass_DOUBLE:
// Align to the larger type
align = 8;
[[fallthrough]];
case typelib_TypeClass_FLOAT:
nFreg++;
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
align = 8;
[[fallthrough]];
default:
if (nFreg > 0)
{
firstIsGreg = false;
}
nGreg++;
break;
}
}
}
ReturnKind getReturnKind(const typelib_TypeDescription* pTypeDescr)
{
sal_Int32 nGreg = 0;
sal_Int32 nFreg = 0;
sal_Int32 align = 4;
bool firstIsGreg = true;
countnGreg(nGreg, nFreg, firstIsGreg, align,
reinterpret_cast<typelib_CompoundTypeDescription const*>(pTypeDescr));
if (nGreg == 0 && nFreg == 2)
{
if (align == 4)
return ReturnKind::FF_Align4;
else
return ReturnKind::FF_Align8;
}
else if (nGreg == 1 && nFreg == 1)
{
if (firstIsGreg)
{
if (align == 4)
return ReturnKind::GF_Align4;
else
return ReturnKind::GF_Align8;
}
else
{
if (align == 4)
return ReturnKind::FG_Align4;
else
return ReturnKind::FG_Align8;
}
}
else
{
return ReturnKind::DEFAULT;
}
}
/*
Transform the returned cpp data to uno.
This happens at the end of uno2cpp, when callee cpp func finished.
| returned data saved in
default cases | gret[0] and gret[1]
2 float | fret[0] and fret[1]
1 float 1 int | gret[0] and fret[0]
There is a complex problem -- alignment. For example, 4 byte float and 8 byte
integer take 16 bytes rather than 12 bytes.
There is also another complex problem. e.g. Two 4 byte integer is compacted
in a0, but two 4 byte float is seperately set in fa0 and fa1. However, return
size is 8 bytes. We need to cut the lower 32bit of fa0 and fa1 seperately and
combine them in 8 bytes.
*/
void fillUNOStruct(const typelib_TypeDescription* pTypeDescr, sal_Int64* gret, double* fret,
void* pRegisterReturn)
{
#ifdef BRIDGE_DEBUG
printf("In fillStruct, pTypeDescr = %p, gret = %p, fret = %p, pRegisterReturn = %p\n",
pTypeDescr, gret, fret, pRegisterReturn);
#endif
ReturnKind returnKind = getReturnKind(pTypeDescr);
switch (returnKind)
{
case ReturnKind::FF_Align4:
memcpy(reinterpret_cast<char*>(pRegisterReturn), &(fret[0]), 4);
memcpy(reinterpret_cast<char*>(pRegisterReturn) + 4, &(fret[1]), 4);
break;
case ReturnKind::FF_Align8:
reinterpret_cast<double*>(pRegisterReturn)[0] = fret[0];
reinterpret_cast<double*>(pRegisterReturn)[1] = fret[1];
break;
case ReturnKind::FG_Align4:
memcpy(reinterpret_cast<char*>(pRegisterReturn), &(fret[0]), 4);
memcpy(reinterpret_cast<char*>(pRegisterReturn) + 4, &(gret[0]), 4);
break;
case ReturnKind::FG_Align8:
reinterpret_cast<double*>(pRegisterReturn)[0] = fret[0];
reinterpret_cast<sal_Int64*>(pRegisterReturn)[1] = gret[0];
break;
case ReturnKind::GF_Align4:
memcpy(reinterpret_cast<char*>(pRegisterReturn), &(gret[0]), 4);
memcpy(reinterpret_cast<char*>(pRegisterReturn) + 4, &(fret[0]), 4);
break;
case ReturnKind::GF_Align8:
reinterpret_cast<sal_Int64*>(pRegisterReturn)[0] = gret[0];
reinterpret_cast<double*>(pRegisterReturn)[1] = fret[0];
break;
default:
reinterpret_cast<sal_Int64*>(pRegisterReturn)[0] = gret[0];
reinterpret_cast<sal_Int64*>(pRegisterReturn)[1] = gret[1];
break;
}
}
/*
Split zipped unoreturn to cpp func. This happens at the end of cpp2uno.
The data in pTarget will be extrat to return regs in privateSnippetExecutor:
| pTarget[0] | pTarget[1] | return type |
default cases | $a0 | $a1 | 0 |
2 float | $fa0 | $fa1 | 0 |
1 float 1 int | $a0 | $fa0 | 1 |
This looks like a reverse version of fillUNOStruct. The reason for such
"meaningless" effort is that java return a compact struct, but cpp not.
*/
void splitUNOStruct(const typelib_TypeDescription* pTypeDescr, sal_uInt64* pTarget,
sal_uInt64* pSource, sal_Int32& returnType)
{
#ifdef BRIDGE_DEBUG
printf("In splitUNOStruct, pTypeDescr = %p, pTarget = %p, pSource = %p\n", pTypeDescr, pTarget,
pSource);
#endif
sal_uInt64* pTemp = (sal_uInt64*)calloc(2, sizeof(sal_uInt64));
ReturnKind returnKind = getReturnKind(pTypeDescr);
switch (returnKind)
{
case ReturnKind::FF_Align4:
memcpy(reinterpret_cast<char*>(pTemp), reinterpret_cast<char*>(pSource), 4);
memset(reinterpret_cast<char*>(pTemp) + 4, 0xFF, 4);
memcpy(reinterpret_cast<char*>(pTemp) + 8, reinterpret_cast<char*>(pSource) + 4, 4);
memset(reinterpret_cast<char*>(pTemp) + 12, 0xFF, 4);
returnType = 0;
break;
case ReturnKind::FF_Align8:
pTemp[0] = pSource[0];
pTemp[1] = pSource[1];
returnType = 0;
break;
case ReturnKind::FG_Align4:
memcpy(reinterpret_cast<char*>(pTemp), reinterpret_cast<char*>(pSource) + 4, 4);
memcpy(reinterpret_cast<char*>(pTemp) + 8, reinterpret_cast<char*>(pSource), 4);
memset(reinterpret_cast<char*>(pTemp) + 12, 0xFF, 4);
returnType = 1;
break;
case ReturnKind::FG_Align8:
pTemp[0] = pSource[1];
pTemp[1] = pSource[0];
returnType = 1;
break;
case ReturnKind::GF_Align4:
memcpy(reinterpret_cast<char*>(pTemp), reinterpret_cast<char*>(pSource), 4);
memcpy(reinterpret_cast<char*>(pTemp) + 8, reinterpret_cast<char*>(pSource) + 4, 4);
memset(reinterpret_cast<char*>(pTemp) + 12, 0xFF, 4);
returnType = 1;
break;
case ReturnKind::GF_Align8:
pTemp[0] = pSource[0];
pTemp[1] = pSource[1];
returnType = 1;
break;
default:
pTemp[0] = pSource[0];
pTemp[1] = pSource[1];
returnType = 0;
break;
}
pTarget[0] = pTemp[0];
pTarget[1] = pTemp[1];
free(pTemp);
}
/*
Extend higher bits for integer types.
According to
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc#integer-calling-convention
> When passed in registers or on the stack, integer scalars narrower than XLEN bits
> are widened according to the sign of their type up to 32 bits, then sign-extended
> to XLEN bits.
*/
void extIntBits(sal_uInt64* outData, const sal_uInt64* inData, bool isSigned, sal_uInt32 dataBytes)
{
if (dataBytes > 8)
{
//SAL_WARN("bridges", "illegal dataBytes in dataBytes, please check the bridge.");
return;
}
sal_uInt64 data = *inData;
char* dataPointer = reinterpret_cast<char*>(&data);
// Clear bits which are not data
sal_uInt64* dataMask = (sal_uInt64*)calloc(1, 8);
memset(dataMask, 0xFF, dataBytes);
data = data & *dataMask;
free(dataMask);
// extend to 32 bit
if (dataBytes < 4)
{
if (isSigned)
{
// Detect the highest bit of the data.
// For example, if a one-byte integer data passed in, we need to detect the 8th bit(8 x 1)
// So left shift 1 three-times(8-1) we can get mask 1000 0000
sal_uInt64 detectMask = 1 << (dataBytes * 8 - 1);
if (detectMask & data)
// Is negative
memset(dataPointer + dataBytes, 0xFF, 4 - dataBytes);
else
// Is positive
memset(dataPointer + dataBytes, 0x0, 4 - dataBytes);
}
else
memset(dataPointer + dataBytes, 0x0, 4 - dataBytes);
// The highest data bit turns into 8 * 4 = 32 bit
dataBytes = 4;
}
// Sign extend to 64 bit
sal_uInt64 detectMask = 1 << (dataBytes * 8 - 1);
if (detectMask & data)
memset(dataPointer + dataBytes, 0xFF, 8 - dataBytes);
else
memset(dataPointer + dataBytes, 0x00, 8 - dataBytes);
*outData = data;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */
|