1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#pragma once
#include <vector>
#include <random>
#include <limits>
struct Particle
{
Particle(size_t nDimensionality)
: mVelocity(nDimensionality)
, mPosition(nDimensionality)
, mCurrentFitness(std::numeric_limits<float>::lowest())
, mBestPosition(nDimensionality)
, mBestFitness(std::numeric_limits<float>::lowest())
{
}
std::vector<double> mVelocity;
std::vector<double> mPosition;
double mCurrentFitness;
std::vector<double> mBestPosition;
double mBestFitness;
};
template <typename DataProvider> class ParticleSwarmOptimizationAlgorithm
{
private:
// inertia
static constexpr double constWeight = 0.729;
// cognitive coefficient
static constexpr double c1 = 1.49445;
// social coefficient
static constexpr double c2 = 1.49445;
static constexpr double constAcceptedPrecision = 0.000000001;
DataProvider& mrDataProvider;
size_t mnNumOfParticles;
std::vector<Particle> maSwarm;
std::random_device maRandomDevice;
std::mt19937 maGenerator;
size_t mnDimensionality;
std::uniform_real_distribution<> maRandom01;
std::vector<double> maBestPosition;
double mfBestFitness;
int mnGeneration;
int mnLastChange;
public:
ParticleSwarmOptimizationAlgorithm(DataProvider& rDataProvider, size_t nNumOfParticles)
: mrDataProvider(rDataProvider)
, mnNumOfParticles(nNumOfParticles)
, maGenerator(maRandomDevice())
, mnDimensionality(mrDataProvider.getDimensionality())
, maRandom01(0.0, 1.0)
, maBestPosition(mnDimensionality)
, mfBestFitness(std::numeric_limits<float>::lowest())
, mnGeneration(0)
, mnLastChange(0)
{
}
std::vector<double> const& getResult() { return maBestPosition; }
int getGeneration() { return mnGeneration; }
int getLastChange() { return mnLastChange; }
void initialize()
{
mnGeneration = 0;
mnLastChange = 0;
maSwarm.clear();
mfBestFitness = std::numeric_limits<float>::lowest();
maSwarm.reserve(mnNumOfParticles);
for (size_t i = 0; i < mnNumOfParticles; i++)
{
maSwarm.emplace_back(mnDimensionality);
Particle& rParticle = maSwarm.back();
mrDataProvider.initializeVariables(rParticle.mPosition, maGenerator);
mrDataProvider.initializeVariables(rParticle.mVelocity, maGenerator);
for (size_t k = 0; k < mnDimensionality; k++)
{
rParticle.mPosition[k] = mrDataProvider.clampVariable(k, rParticle.mPosition[k]);
}
rParticle.mCurrentFitness = mrDataProvider.calculateFitness(rParticle.mPosition);
for (size_t k = 0; k < mnDimensionality; k++)
{
rParticle.mPosition[k] = mrDataProvider.clampVariable(k, rParticle.mPosition[k]);
}
rParticle.mBestPosition.insert(rParticle.mBestPosition.begin(),
rParticle.mPosition.begin(), rParticle.mPosition.end());
rParticle.mBestFitness = rParticle.mCurrentFitness;
if (rParticle.mCurrentFitness > mfBestFitness)
{
mfBestFitness = rParticle.mCurrentFitness;
maBestPosition.insert(maBestPosition.begin(), rParticle.mPosition.begin(),
rParticle.mPosition.end());
}
}
}
bool next()
{
bool bBestChanged = false;
for (Particle& rParticle : maSwarm)
{
double fRandom1 = maRandom01(maGenerator);
double fRandom2 = maRandom01(maGenerator);
for (size_t k = 0; k < mnDimensionality; k++)
{
rParticle.mVelocity[k]
= (constWeight * rParticle.mVelocity[k])
+ (c1 * fRandom1 * (rParticle.mBestPosition[k] - rParticle.mPosition[k]))
+ (c2 * fRandom2 * (maBestPosition[k] - rParticle.mPosition[k]));
mrDataProvider.clampVariable(k, rParticle.mVelocity[k]);
rParticle.mPosition[k] += rParticle.mVelocity[k];
rParticle.mPosition[k] = mrDataProvider.clampVariable(k, rParticle.mPosition[k]);
}
rParticle.mCurrentFitness = mrDataProvider.calculateFitness(rParticle.mPosition);
if (rParticle.mCurrentFitness > rParticle.mBestFitness)
{
rParticle.mBestFitness = rParticle.mCurrentFitness;
rParticle.mBestPosition.insert(rParticle.mBestPosition.begin(),
rParticle.mPosition.begin(),
rParticle.mPosition.end());
}
if (rParticle.mCurrentFitness > mfBestFitness)
{
if (std::abs(rParticle.mCurrentFitness - mfBestFitness) > constAcceptedPrecision)
{
bBestChanged = true;
mnLastChange = mnGeneration;
}
maBestPosition.insert(maBestPosition.begin(), rParticle.mPosition.begin(),
rParticle.mPosition.end());
mfBestFitness = rParticle.mCurrentFitness;
}
}
mnGeneration++;
return bBestChanged;
}
};
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|