1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/*******************************************************************************
* librepfunc: A tiny lib of common functions and tasks in my c++ projects.
* See the README file for copyright information and how to reach the author.
******************************************************************************/
#include <string> // std::stod
#include <iostream> // std::cerr
#include <limits> // std::numeric_limits
#include <repfunc.h>
/* A valid floating point number using the "C" locale is formed by
* an optional sign character (+ or -),
* followed by one of:
* - A sequence of digits, optionally containing a decimal-point character (.),
* optionally followed by an exponent part (an e or E character followed by
* an optional sign and a sequence of digits).
* - A 0x or 0X prefix, then a sequence of hexadecimal digits (as in isxdigit)
* optionally containing a period which separates the whole and fractional
* number parts. Optionally followed by a power of 2 exponent
* (a p or P character followed by an optional sign and a sequence of hexa-
* decimal digits).
* - INF or INFINITY (ignoring case).
* - NAN or NANsequence (ignoring case), where sequence is a sequence of char,
* where each character is either an alphanumeric character (as in isalnum)
* or the underscore character (_).
*/
/* IMPORTANT!
* 1. Different to std::stod() and strtod(), StrToFloat silently accepts
* period (.) and comma (,) as decimal-separator.
*
* 2. StrToFloat is locale-independent.
*
* 3. Any lower control char is considered a whitespace and left trimmed,
* whereas std::stod() and strtod() trims only those as isspace knows.
*
* 4. StrToFloat shouldn' throw exceptions. At least, thats one goal.
*/
double StrToFloat(const std::string& s, size_t* pos) {
size_t p, len = s.size();
const char* P = s.c_str();
// trim left any lower control chars.
for(p=0;p<len;p++) if (P[p] > 0x20) break;
char first = P[p];
if (first == 0) {
std::cerr << __FUNCTION__ << ": cannot parse '" << s << "'" << std::endl;
if (pos) *pos = p;
return std::numeric_limits<double>::quiet_NaN();
}
// optional sign character (+ or -)
bool plus = first == '+';
bool minus = first == '-';
if (plus or minus) {
p++;
first = P[p];
}
char second = len > (p+1) ? P[p+1] : 0;
char third = len > (p+2) ? P[p+2] : 0;
// NAN or NANsequence
bool nan = ((first == 'N') or (first == 'n')) and
((second == 'A') or (second == 'a')) and
((third == 'N') or (third == 'n'));
if (nan) {
p += 3;
for(;p<len;) {
char sequence = P[p];
if ((sequence == '_') or
((sequence >= 'A') and (sequence <= 'Z')) or
((sequence >= 'a') and (sequence <= 'z')))
p++;
else
break;
}
if (pos) *pos = p;
return std::numeric_limits<double>::quiet_NaN();
}
// INF or INFINITY (ignoring case)
bool inf = ((first == 'I') or (first == 'i')) and
((second == 'N') or (second == 'n')) and
((third == 'F') or (third == 'f'));
if (inf) {
p += 3;
char c4 = len > (p+1) ? P[p+1] : 0;
char c5 = len > (p+2) ? P[p+2] : 0;
char c6 = len > (p+3) ? P[p+3] : 0;
char c7 = len > (p+4) ? P[p+4] : 0;
char c8 = len > (p+5) ? P[p+5] : 0;
if (((c4 == 'I') or (c4 == 'i')) and
((c5 == 'N') or (c5 == 'n')) and
((c6 == 'I') or (c6 == 'i')) and
((c7 == 'T') or (c7 == 't')) and
((c8 == 'Y') or (c8 == 'y')))
p += 5;
if (pos) *pos = p;
if (minus)
return -std::numeric_limits<double>::infinity();
else
return std::numeric_limits<double>::infinity();
}
bool hex = (first == '0') and
((second == 'X') or (second == 'x'));
if (hex) {
/* - A 0x or 0X prefix, then a sequence of hexadecimal digits (as in isxdigit)
* optionally containing a period which separates the whole and fractional
* number parts. Optionally followed by a power of 2 exponent
* (a p or P character followed by an optional sign and a sequence of hexa-
* decimal digits).
*/
p += 2; // skip prefix "0x"
size_t whole_part = 0;
size_t fract_part = 0;
size_t fract_div = 1;
size_t exp_part = 0;
bool exp_sign = true;
char next = 0;
for(; p<len; p++) {
next = P[p];
if ((next >= '0') and (next <= '9')) {
whole_part *= 16;
whole_part += (next - '0');
}
else if ((next >= 'A') and (next <= 'F')) {
whole_part *= 16;
whole_part += 10 + (next - 'A');
}
else if ((next >= 'a') and (next <= 'f')) {
whole_part *= 16;
whole_part += 10 + (next - 'a');
}
else
break;
}
if ((next == '.') or (next == ',')) {
for(p++; p<len; p++) {
next = P[p];
if ((next >= '0') and (next <= '9')) {
fract_div *= 16;
fract_part *= 16;
fract_part += (next - '0');
}
else if ((next >= 'A') and (next <= 'F')) {
fract_div *= 16;
fract_part *= 16;
fract_part += 10 + (next - 'A');
}
else if ((next >= 'a') and (next <= 'f')) {
fract_div *= 16;
fract_part *= 16;
fract_part += 10 + (next - 'a');
}
else
break;
}
}
if ((next == 'P') or (next == 'p')) {
p++;
next = P[p];
if ((next == '+') or (next == '-')) {
exp_sign = (next == '+');
p++;
next = P[p];
}
for(; p<len; p++) {
next = P[p];
if ((next >= '0') and (next <= '9')) {
exp_part *= 16;
exp_part += (next - '0');
}
else if ((next >= 'A') and (next <= 'F')) {
exp_part *= 16;
exp_part += 10 + (next - 'A');
}
else if ((next >= 'a') and (next <= 'f')) {
exp_part *= 16;
exp_part += 10 + (next - 'a');
}
else
break;
}
}
double fract = (double)fract_part / (double)fract_div;
double result = (double)whole_part + fract;
if (minus)
result *= -1.0;
if (exp_part) {
double pow = (double) (1 << exp_part);
if (exp_sign)
result *= pow;
else
result *= 1.0/pow;
}
if (pos) *pos = p;
return result;
}
else {
/* - A sequence of digits, optionally containing a decimal-point character (.),
* optionally followed by an exponent part (an e or E character followed by
* an optional sign and a sequence of digits).
*/
size_t whole_part = 0;
size_t fract_part = 0;
size_t fract_div = 1;
size_t exp_part = 0;
bool exp_sign = true;
char next = 0;
for(; p<len; p++) {
next = P[p];
if ((next < '0') or (next > '9'))
break;
whole_part *= 10;
whole_part += (next - '0');
}
if ((next == '.') or (next == ',')) {
for(p++; p<len; p++) {
next = P[p];
if ((next < '0') or (next > '9'))
break;
fract_div *= 10;
fract_part *= 10;
fract_part += (next - '0');
}
}
if ((next == 'E') or (next == 'e')) {
p++;
next = P[p];
if ((next == '+') or (next == '-')) {
exp_sign = (next == '+');
p++;
next = P[p];
}
for(; p<len; p++) {
next = P[p];
if ((next < '0') or (next > '9'))
break;
exp_part *= 10;
exp_part += (next - '0');
}
}
double fract = (double)fract_part / (double)fract_div;
double result = (double)whole_part + fract;
if (minus)
result *= -1.0;
if (exp_part) {
size_t pow = 1;
for(;exp_part;exp_part--) pow *= 10;
if (exp_sign)
result *= (double)pow;
else
result *= 1.0/((double)pow);
}
if (pos) *pos = p;
return result;
}
// never reached.
std::cerr << __FUNCTION__ << ":" << __LINE__ << ": something is wrong here.";
return std::numeric_limits<double>::quiet_NaN();
}
double WStrToFloat(const std::wstring& ws, size_t* pos) {
std::string s = WStrToStr(ws);
return StrToFloat(s, pos);
}
|