File: crypt_symkey.c

package info (click to toggle)
libreswan 5.2-2.3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 81,644 kB
  • sloc: ansic: 129,988; sh: 32,018; xml: 20,646; python: 10,303; makefile: 3,022; javascript: 1,506; sed: 574; yacc: 511; perl: 264; awk: 52
file content (644 lines) | stat: -rw-r--r-- 18,162 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/*
 * SYMKEY manipulation functions, for libreswan
 *
 * Copyright (C) 2015-2019 Andrew Cagney <cagney@gnu.org>
 * Copyright (C) 2019 D. Hugh Redelmeier <hugh@mimosa.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <https://www.gnu.org/licenses/gpl2.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 */

#include "lswalloc.h"
#include "lswlog.h"
#include "ike_alg.h"
#include "crypt_symkey.h"
#include "fips_mode.h"
#include "lswnss.h"
#include "ike_alg_encrypt.h"		/* for ike_alg_encrypt_null */

#define SPACES "    "

static PK11SymKey *ephemeral_symkey;

void init_crypt_symkey(struct logger *logger)
{
	/* get a secret key */
	PK11SlotInfo *slot = PK11_GetBestSlot(CKM_AES_KEY_GEN,
					      lsw_nss_get_password_context(logger));
	if (slot == NULL) {
		LLOG_FATAL_JAMBUF(PLUTO_EXIT_FAIL, logger, buf) {
			jam(buf, "NSS: ephemeral slot error: ");
			jam_nss_error_code(buf, PR_GetError());
		}
	}
	ephemeral_symkey = PK11_KeyGen(slot, CKM_AES_KEY_GEN,
				       NULL, 128/8, NULL);
	PK11_FreeSlot(slot); /* reference counted */
	if (DBGP(DBG_CRYPT)) {
		LDBG_symkey(logger, SPACES, "ephemeral", ephemeral_symkey);
	}
}

void symkey_delref_where(struct logger *logger, const char *name,
			 PK11SymKey **key, where_t where)
{
	ldbg_delref_where(logger, name, (*key), where);
	if (*key != NULL) {
		PK11_FreeSymKey(*key);
	}
	*key = NULL;
}

PK11SymKey *symkey_addref_where(struct logger *logger, const char *name,
				PK11SymKey *key, where_t where)
{
	ldbg_addref_where(logger, name, key, where);
	if (key != NULL) {
		PK11_ReferenceSymKey(key);
	}
	return key;
}

size_t sizeof_symkey(PK11SymKey *key)
{
	if (key == NULL) {
		return 0;
	} else {
		return PK11_GetKeyLength(key);
	}
}

void jam_symkey(struct jambuf *buf, const char *name, PK11SymKey *key)
{
	if (key == NULL) {
		/*
		 * For instance, when a zero-length key gets extracted
		 * from an existing key.
		 */
		jam(buf, "%s-key@NULL", name);
	} else {
		jam(buf, "%s-key@%p (%zd-bytes, ",
		    name, key, sizeof_symkey(key));
		jam_nss_ckm(buf, PK11_GetMechanism(key));
		jam(buf, ")");
	}
}

void LDBG_symkey(struct logger *logger, const char *prefix, const char *name, PK11SymKey *key)
{
	LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {
		jam(buf, "%s: ", prefix);
		jam_symkey(buf, name, key);
	}
#if 0
	if (DBGP(DBG_CRYPT)) {
		if (is_fips_mode()) {
			DBG_log("%s secured by FIPS", prefix);
		} else {
			chunk_t bytes = chunk_from_symkey(prefix, key, logger);
			/* NULL suppresses the dump header */
			DBG_dump_hunk(NULL, bytes);
			free_chunk_content(&bytes);
		}
	}
#endif
}

PK11SymKey *crypt_derive(PK11SymKey *base_key, CK_MECHANISM_TYPE derive, SECItem *params,
			 const char *target_name, CK_MECHANISM_TYPE target_mechanism,
			 CK_ATTRIBUTE_TYPE operation,
			 int key_size, CK_FLAGS flags,
			 where_t where, struct logger *logger)
{
#define DBG_DERIVE()							\
	LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {				\
		jam_nss_ckm(buf, derive);				\
		jam_string(buf, ":");					\
	}								\
	LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {				\
		jam_string(buf, SPACES"target: ");			\
		jam_nss_ckm(buf, target_mechanism);			\
	}								\
	if (flags != 0) {						\
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {			\
			jam_string(buf, SPACES"flags: ");		\
			jam_nss_ckf(buf, flags);			\
		}							\
	}								\
	if (key_size != 0) {						\
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {			\
			jam(buf, SPACES "key_size: %d-bytes",		\
			    key_size);					\
		}							\
	}								\
	LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {				\
		jam_string(buf, SPACES"base: ");			\
		jam_symkey(buf, "base", base_key);			\
	}								\
	if (operation != CKA_DERIVE) {					\
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {			\
			jam_string(buf, SPACES"operation: ");		\
			jam_nss_cka(buf, operation);			\
		}							\
	}								\
	if (params != NULL) {						\
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {			\
			jam(buf, SPACES "params: %d-bytes@%p",		\
			    params->len, params->data);			\
		}							\
	}

	if (DBGP(DBG_CRYPT)) {
		DBG_DERIVE();
	}

	PK11SymKey *target_key = PK11_DeriveWithFlags(base_key, derive,
						      params, target_mechanism,
						      operation, key_size, flags);

	if (target_key == NULL) {
		LLOG_PEXPECT_JAMBUF(logger, HERE, buf) {
			jam_string(buf, "NSS: ");
			jam_nss_ckm(buf, derive);
			jam_string(buf, " failed: ");
			jam_nss_error_code(buf, PR_GetError());
		}
		DBG_DERIVE();
	} else if (DBGP(DBG_REFCNT)) {
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {
			jam_string(buf, SPACES"result: newref ");
			jam_symkey(buf, target_name, target_key);
			jam_where(buf, where);
		}
	}
	return target_key;
#undef DBG_DERIVE
}

/*
 * Merge a symkey and an array of bytes into a new SYMKEY using
 * DERIVE.
 *
 * derive: the operation that is to be performed; target: the
 * mechanism/type of the resulting symkey.
 */
static PK11SymKey *merge_symkey_bytes(const char *result_name,
				      PK11SymKey *base_key,
				      const void *data, size_t sizeof_data,
				      CK_MECHANISM_TYPE derive,
				      CK_MECHANISM_TYPE target,
				      struct logger *logger)
{
	passert(sizeof_data > 0);
	CK_KEY_DERIVATION_STRING_DATA string = {
		.pData = (void *)data,
		.ulLen = sizeof_data,
	};
	SECItem data_param = {
		.data = (unsigned char*)&string,
		.len = sizeof(string),
	};
	CK_ATTRIBUTE_TYPE operation = CKA_DERIVE;
	int key_size = 0;

	return crypt_derive(base_key, derive, &data_param,
			    result_name, target,
			    operation, key_size, /*flags*/0,
			    HERE, logger);
}

/*
 * Merge two SYMKEYs into a new SYMKEY using DERIVE.
 *
 * derive: the operation to be performed; target: the mechanism/type
 * of the resulting symkey.
 */

static PK11SymKey *merge_symkey_symkey(const char *result_name,
				       PK11SymKey *base_key,
				       PK11SymKey *key,
				       CK_MECHANISM_TYPE derive,
				       CK_MECHANISM_TYPE target,
				       struct logger *logger)
{
	CK_OBJECT_HANDLE key_handle = PK11_GetSymKeyHandle(key);
	SECItem key_param = {
		.data = (unsigned char*)&key_handle,
		.len = sizeof(key_handle)
	};
	CK_ATTRIBUTE_TYPE operation = CKA_DERIVE;
	int key_size = 0;
	return crypt_derive(base_key, derive, &key_param,
			    result_name, target,
			    operation, key_size, /*flags*/0,
			    HERE, logger);
}

/*
 * Extract a SYMKEY from an existing SYMKEY.
 */
static PK11SymKey *symkey_from_symkey(const char *result_name,
				      PK11SymKey *base_key,
				      CK_MECHANISM_TYPE target,
				      CK_FLAGS flags,
				      size_t key_offset, size_t key_size,
				      where_t where, struct logger *logger)
{
	/* spell out all the parameters */
	CK_EXTRACT_PARAMS bs = key_offset * BITS_IN_BYTE;
	SECItem param = {
		.data = (unsigned char*)&bs,
		.len = sizeof(bs),
	};
	CK_MECHANISM_TYPE derive = CKM_EXTRACT_KEY_FROM_KEY;
	CK_ATTRIBUTE_TYPE operation = CKA_FLAGS_ONLY;

	if (DBGP(DBG_CRYPT)) {
		DBG_log(SPACES "key-offset: %zd, key-size: %zd",
			key_offset, key_size);
	}

	return crypt_derive(base_key, derive, &param,
			    result_name, target,
			    operation, key_size, flags,
			    where, logger);
}


/*
 * For on-wire algorithms.
 */
chunk_t chunk_from_symkey(const char *name, PK11SymKey *symkey,
			  struct logger *logger)
{
	SECStatus status;
	if (symkey == NULL) {
		ldbgf(DBG_CRYPT, logger,
		      "%s NULL key has no bytes", name);
		return EMPTY_CHUNK;
	}

	size_t sizeof_bytes = sizeof_symkey(symkey);
	if (DBGP(DBG_CRYPT)) {
		LDBG_log(logger, "%s extracting all %zd bytes of key@%p",
			 name, sizeof_bytes, symkey);
		LDBG_symkey(logger, name, "symkey", symkey);
	}

	/* get a secret key */
	PK11SymKey *ephemeral_key = ephemeral_symkey;

	/*
	 * Ensure that the source key shares a slot with the
	 * ephemeral_key.  The "move" always returns something that
	 * needs to be released (if no move is needed, the reference
	 * count is incremented).
	 */
	PK11SymKey *slot_key;
	{
		PK11SlotInfo *slot = PK11_GetSlotFromKey(ephemeral_key);
		slot_key = PK11_MoveSymKey(slot, CKA_UNWRAP, 0, 0, symkey);
		PK11_FreeSlot(slot); /* reference counted */
		passert(slot_key != NULL);
	}
	if (DBGP(DBG_REFCNT)) {
	    if (slot_key == symkey) {
		    /* output should mimic symkey_addref() */
		    LDBG_log(logger, "%s: slot-key@%p: addref sym-key@%p",
			     name, slot_key, symkey);
	    } else {
		    LDBG_symkey(logger, name, "newref slot", slot_key);
	    }
	}

	SECItem wrapped_key;
	/* Round up the wrapped key length to a 16-byte boundary. */
	wrapped_key.len = (sizeof_bytes + 15) & ~15;
	wrapped_key.data = alloc_bytes(wrapped_key.len, name);
	ldbgf(DBG_CRYPT, logger, "sizeof bytes %d", wrapped_key.len);
	status = PK11_WrapSymKey(CKM_AES_ECB, NULL, ephemeral_key, slot_key,
				 &wrapped_key);
	passert(status == SECSuccess);
	if (DBGP(DBG_CRYPT)) {
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {
			jam_string(buf, "wrapper: ");
			jam_nss_secitem(buf, &wrapped_key);
		}
	}

	void *bytes = alloc_bytes(wrapped_key.len, name);
	unsigned int out_len = 0;
	status = PK11_Decrypt(ephemeral_key, CKM_AES_ECB, NULL,
			      bytes, &out_len, wrapped_key.len,
			      wrapped_key.data, wrapped_key.len);
	pfreeany(wrapped_key.data);
	symkey_delref(logger, "slot-key", &slot_key);
	passert(status == SECSuccess);
	passert(out_len >= sizeof_bytes);

	if (DBGP(DBG_CRYPT)) {
		DBG_log("%s extracted len %d bytes at %p", name, out_len, bytes);
		DBG_dump("unwrapped:", bytes, out_len);
	}

	return (chunk_t) {
		.ptr = bytes,
		.len = sizeof_bytes,
	};
}

chunk_t chunk_from_symkey_bytes(const char *prefix, PK11SymKey *symkey,
				size_t chunk_start, size_t sizeof_chunk,
				struct logger *logger, where_t where)
{
	PK11SymKey *slice = key_from_symkey_bytes(prefix, symkey,
						  chunk_start, sizeof_chunk,
						  where, logger);
	chunk_t chunk = chunk_from_symkey("initiator salt", slice, logger);
	symkey_delref(logger, "slice", &slice);
	return chunk;
}

/*
 * Extract SIZEOF_SYMKEY bytes of keying material as a generic
 * key.
 *
 * Since NSS NSS expects a key's mechanism to match the NSS algorithm
 * the key is intended for, this generic key cannot be used for
 * encryption and/or PRF calculation.  Instead use encrypt_key_*() or
 * prf_key_*().
 *
 * Offset into the SYMKEY is in BYTES.
 */

PK11SymKey *symkey_from_bytes(const char *name,
			      const uint8_t *bytes, size_t sizeof_bytes,
			      struct logger *logger)
{
	if (sizeof_bytes == 0) {
		/* hopefully caller knows what they are doing */
		return NULL;
	}

	PK11SymKey *scratch = ephemeral_symkey;
	PK11SymKey *tmp = merge_symkey_bytes(name, scratch, bytes, sizeof_bytes,
					     CKM_CONCATENATE_DATA_AND_BASE,
					     CKM_EXTRACT_KEY_FROM_KEY,
					     logger);
	passert(tmp != NULL);
	/*
	 * Something of an old code hack.  Keys fed to the hasher, for
	 * instance, get this type.
	 */
	CK_FLAGS flags = 0;
	CK_MECHANISM_TYPE target = CKM_EXTRACT_KEY_FROM_KEY;
	PK11SymKey *key = symkey_from_symkey(name, tmp, target, flags,
					     0, sizeof_bytes, HERE, logger);
	passert(key != NULL);
	symkey_delref(logger, "tmp", &tmp);
	return key;
}

PK11SymKey *encrypt_key_from_bytes(const char *name,
				   const struct encrypt_desc *encrypt,
				   const uint8_t *bytes, size_t sizeof_bytes,
				   where_t where, struct logger *logger)
{
	PK11SymKey *scratch = ephemeral_symkey;
	PK11SymKey *tmp = merge_symkey_bytes(name, scratch, bytes, sizeof_bytes,
					     CKM_CONCATENATE_DATA_AND_BASE,
					     CKM_EXTRACT_KEY_FROM_KEY,
					     logger);
	passert(tmp != NULL);
	PK11SymKey *key = encrypt_key_from_symkey_bytes(name, encrypt,
							0, sizeof_bytes,
							tmp, where, logger);
	passert(key != NULL);
	symkey_delref(logger, "tmp", &tmp);
	return key;
}

PK11SymKey *prf_key_from_bytes(const char *name, const struct prf_desc *prf,
			       const uint8_t *bytes, size_t sizeof_bytes,
			       where_t where, struct logger *logger)
{
	PK11SymKey *scratch = ephemeral_symkey;
	PK11SymKey *tmp = merge_symkey_bytes(name, scratch, bytes, sizeof_bytes,
					     CKM_CONCATENATE_DATA_AND_BASE,
					     CKM_EXTRACT_KEY_FROM_KEY,
					     logger);
	passert(tmp != NULL);
	PK11SymKey *key = prf_key_from_symkey_bytes(name, prf,
						    0, sizeof_bytes,
						    tmp, where, logger);
	passert(key != NULL);
	symkey_delref(logger, "tmp", &tmp);
	return key;
}

/*
 * Append new keying material to an existing key; replace the existing
 * key with the result.
 *
 * Use this to chain a series of concat operations.
 */

void append_symkey_symkey(PK11SymKey **lhs, PK11SymKey *rhs,
			  struct logger *logger)
{
	PK11SymKey *newkey = merge_symkey_symkey("result", *lhs, rhs,
						 CKM_CONCATENATE_BASE_AND_KEY,
						 PK11_GetMechanism(*lhs),
						 logger);
	symkey_delref(logger, "lhs", lhs);
	*lhs = newkey;
}

void append_symkey_bytes(const char *name,
			 PK11SymKey **lhs, const void *rhs,
			 size_t sizeof_rhs,
			 struct logger *logger)
{
	if (sizeof_rhs == 0) {
		/* no change required; stops nss crash */
		return;
	}

	PK11SymKey *newkey = merge_symkey_bytes(name, *lhs, rhs, sizeof_rhs,
						CKM_CONCATENATE_BASE_AND_DATA,
						PK11_GetMechanism(*lhs),
						logger);
	symkey_delref(logger, "lhs", lhs);
	*lhs = newkey;
}

void prepend_bytes_to_symkey(const char *result,
			     const void *lhs, size_t sizeof_lhs,
			     PK11SymKey **rhs,
			     struct logger *logger)
{
	/* copy the existing KEY's type (mechanism). */
	PK11SymKey *newkey = merge_symkey_bytes(result, *rhs, lhs, sizeof_lhs,
						CKM_CONCATENATE_DATA_AND_BASE,
						PK11_GetMechanism(*rhs),
						logger);
	symkey_delref(logger, "rhs", rhs);
	*rhs = newkey;
}

void append_symkey_byte(PK11SymKey **lhs, uint8_t rhs,
			struct logger *logger)
{
	append_symkey_bytes("result", lhs, &rhs, sizeof(rhs), logger);
}

/*
 * Extract SIZEOF_SYMKEY bytes of keying material as a PRF key.
 *
 * Offset into the SYMKEY is in BYTES.
 */

PK11SymKey *prf_key_from_symkey_bytes(const char *name,
				      const struct prf_desc *prf,
				      size_t symkey_start_byte, size_t sizeof_symkey,
				      PK11SymKey *source_key,
				      where_t where, struct logger *logger)
{
	/*
	 * NSS expects a key's mechanism to match the NSS algorithm
	 * the key is intended for.  If this is wrong then the
	 * operation fails.
	 *
	 * Unfortunately, some algorithms are not implemented by NSS,
	 * so the correct key type can't always be specified.  For
	 * those specify CKM_VENDOR_DEFINED.
	 *
	 * XXX: this function should be part of prf_ops.
	 */
	CK_FLAGS flags;
	CK_MECHANISM_TYPE mechanism;
	if (prf->nss.mechanism == 0) {
		flags = 0;
		mechanism = CKM_VENDOR_DEFINED;
	} else {
		flags = CKF_SIGN;
		mechanism = prf->nss.mechanism;
	}
	return symkey_from_symkey(name, source_key, mechanism, flags,
				  symkey_start_byte, sizeof_symkey,
				  where, logger);
}

/*
 * Extract SIZEOF_SYMKEY bytes of keying material as an ENCRYPTER key
 * (i.e., can be used to encrypt/decrypt data using ENCRYPTER).
 *
 * Offset into the SYMKEY is in BYTES.
 */

PK11SymKey *encrypt_key_from_symkey_bytes(const char *name,
					  const struct encrypt_desc *encrypt,
					  size_t symkey_start_byte, size_t sizeof_symkey,
					  PK11SymKey *source_key,
					  where_t where, struct logger *logger)
{
	/*
	 * NSS throws a hissy fit when asked to extract 0 bytes.
	 */
	if (sizeof_symkey == 0) {
		PASSERT(logger, encrypt == &ike_alg_encrypt_null);
		PASSERT(logger, impair.allow_null_none);
		return NULL;
	}
	/*
	 * NSS expects a key's mechanism to match the NSS algorithm
	 * the key is intended for.  If this is wrong then the
	 * operation fails.
	 *
	 * Unfortunately, some algorithms are not implemented by NSS,
	 * so the correct key type can't always be specified.  For
	 * those specify CKM_VENDOR_DEFINED.
	 *
	 * XXX: This function should be part of encrypt_ops.
	 */
	CK_FLAGS flags;
	CK_MECHANISM_TYPE mechanism;
	if (encrypt->nss.mechanism == 0) {
		flags = 0;
		mechanism = CKM_VENDOR_DEFINED;
	} else {
		flags = CKF_ENCRYPT | CKF_DECRYPT;
		mechanism = encrypt->nss.mechanism;
	}
	return symkey_from_symkey(name, source_key, mechanism, flags,
				  symkey_start_byte, sizeof_symkey,
				  where, logger);
}

PK11SymKey *key_from_symkey_bytes(const char *result_name,
				  PK11SymKey *source_key,
				  size_t next_byte, size_t sizeof_key,
				  where_t where, struct logger *logger)
{
	if (sizeof_key == 0) {
		return NULL;
	} else {
		return symkey_from_symkey(result_name, source_key,
					  CKM_EXTRACT_KEY_FROM_KEY,
					  0, next_byte, sizeof_key,
					  where, logger);
	}
}

/*
 * XOR a symkey with a chunk.
 *
 * XXX: hmac.c had very similar code, only, instead of
 * target=CKM_CONCATENATE_BASE_AND_DATA it used
 * target=hasher-to-ckm(hasher).
 *
 * hasher-to-ckm mapped hasher->common.alg_id to CMK vis: OAKLEY_MD5 ->
 * CKM_MD5; OAKLEY_SHA1 -> CKM_SHA_1; OAKLEY_SHA2_256 -> CKM_SHA256;
 * OAKLEY_SHA2_384 -> CKM_SHA384; OAKLEY_SHA2_512 -> CKM_SHA512; only
 * in the default case it would set target to 0x80000000????
 */
PK11SymKey *xor_symkey_chunk(PK11SymKey *lhs, chunk_t rhs, struct logger *logger)
{
	return merge_symkey_bytes("result", lhs, rhs.ptr, rhs.len,
				  CKM_XOR_BASE_AND_DATA,
				  CKM_CONCATENATE_BASE_AND_DATA,
				  logger);
}

PK11SymKey *cipher_symkey(const char *name,
			  const struct encrypt_desc *cipher,
			  unsigned bits,
			  struct logger *logger,
			  where_t where)
{
	bool valid_key_length = false;
	FOR_EACH_ELEMENT(key, cipher->key_bit_lengths) {
		if (*key == bits) {
			valid_key_length = true;
			break;
		}
	}
	PASSERT(logger, valid_key_length);
	PASSERT(logger, cipher->nss.key_gen != 0);

	PK11SlotInfo *slot = PK11_GetBestSlot(cipher->nss.key_gen,
					      lsw_nss_get_password_context(logger));
	PK11SymKey *symkey = PK11_KeyGen(slot, cipher->nss.key_gen,
					 /*param*/NULL, BYTES_FOR_BITS(bits),
					 /*wincx*/NULL);

	ldbg_alloc(logger, name, symkey, where);
	return symkey;
}