File: pubkey_rsa.c

package info (click to toggle)
libreswan 5.2-2.3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 81,644 kB
  • sloc: ansic: 129,988; sh: 32,018; xml: 20,646; python: 10,303; makefile: 3,022; javascript: 1,506; sed: 574; yacc: 511; perl: 264; awk: 52
file content (753 lines) | stat: -rw-r--r-- 22,595 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * mechanisms for preshared keys (public, private, and preshared secrets)
 *
 * this is the library for reading (and later, writing!) the ipsec.secrets
 * files.
 *
 * Copyright (C) 1998-2004  D. Hugh Redelmeier.
 * Copyright (C) 2005 Michael Richardson <mcr@xelerance.com>
 * Copyright (C) 2009-2012 Avesh Agarwal <avagarwa@redhat.com>
 * Copyright (C) 2012-2015 Paul Wouters <paul@libreswan.org>
 * Copyright (C) 2016-2019 Andrew Cagney <cagney@gnu.org>
 * Copyright (C) 2017 Vukasin Karadzic <vukasin.karadzic@gmail.com>
 * Copyright (C) 2018 Sahana Prasad <sahana.prasad07@gmail.com>
 * Copyright (C) 2019 Paul Wouters <pwouters@redhat.com>
 * Copyright (C) 2019 D. Hugh Redelmeier <hugh@mimosa.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <https://www.gnu.org/licenses/gpl2.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 */

#include <features.h>
#include <cryptohi.h>
#include <keyhi.h>

#include "lswnss.h"
#include "lswlog.h"
#include "secrets.h"
#include "ike_alg.h"
#include "ike_alg_hash.h"

/*
 * Deal with RFC Resource Records as defined in rfc3110 (nee rfc2537).
 */

static err_t RSA_pubkey_content_to_ipseckey_rdata(const struct pubkey_content *pkc,
						  chunk_t *ipseckey_pubkey,
						  enum ipseckey_algorithm_type *ipseckey_algorithm)
{
	SECKEYRSAPublicKey *rsa = &pkc->public_key->u.rsa;
	chunk_t exponent = same_secitem_as_chunk(rsa->publicExponent);
	chunk_t modulus = same_secitem_as_chunk(rsa->modulus);
	*ipseckey_pubkey = EMPTY_CHUNK;
	*ipseckey_algorithm = 0;

	/*
	 * Since exponent length field is either 1 or 3 bytes in size,
	 * just allocate 3 extra bytes.
	 */
	size_t rrlen = exponent.len + modulus.len + 3;
	uint8_t *buf = alloc_bytes(rrlen, "buffer for rfc3110");
	uint8_t *p = buf;

	if (exponent.len <= 255) {
		*p++ = exponent.len;
	} else if (exponent.len <= 0xffff) {
		*p++ = 0;
		*p++ = (exponent.len >> 8) & 0xff;
		*p++ = exponent.len & 0xff;
	} else {
		pfree(buf);
		return "RSA public key exponent too long for resource record";
	}

	memcpy(p, exponent.ptr, exponent.len);
	p += exponent.len;
	memcpy(p, modulus.ptr, modulus.len);
	p += modulus.len;

	*ipseckey_algorithm = IPSECKEY_ALGORITHM_RSA;
	*ipseckey_pubkey = (chunk_t) {
		.ptr = buf,
		.len = p - buf,
	};

	return NULL;
}

/*
 * Note: e and n will point int rr.
 *
 * See https://www.rfc-editor.org/rfc/rfc3110#section-2
 */
static diag_t pubkey_ipseckey_rdata_to_rsa_pubkey(shunk_t rr, shunk_t *e, shunk_t *n)
{
	*e = null_shunk;
	*n = null_shunk;

	/*
	 * Step 1: find the bounds of the exponent and modulus within
	 * the resource record and verify that they are sane.
	 *
	 * XXX: this isn't an ASN.1 encoded length so what is it?
	 */

	shunk_t exponent = null_shunk;
	const uint8_t *const rr_ptr = rr.ptr;
	if (rr.len >= 2 && rr_ptr[0] != 0x00) {
		/*
		 * Exponent length is one-byte, followed by that many
		 * exponent bytes
		 */
		exponent = shunk2(rr_ptr + 1, rr_ptr[0]);
	} else if (rr.len >= 3 && rr_ptr[0] == 0x00) {
		/*
		 * Exponent length is 0x00 followed by 2 bytes of
		 * length (big-endian), followed by that many exponent
		 * bytes
		 */
		exponent = shunk2(rr_ptr + 3, (rr_ptr[1] << BITS_IN_BYTE) + rr_ptr[2]);
	} else {
		/* not even room for length! */
		return diag("%zu byte raw RSA public is way too short",
			    rr.len);
	}

	/*
	 * Does the exponent fall off the end of the resource record?
	 */
	const uint8_t *const exponent_end = exponent.ptr + exponent.len;
	const uint8_t *const rr_end = rr_ptr + rr.len;
	if (exponent_end > rr_end) {
		return diag("%zu byte raw RSA public key is too short for exponent of length %zu",
			    rr.len, exponent.len);
	}

	/*
	 * What is left over forms the modulus.
	 *
	 * XXX: This overlaps RSA_secret_sane.
	 */
	shunk_t modulus = shunk2(exponent_end, rr_end - exponent_end);

	if (modulus.len < RSA_MIN_OCTETS_RFC) {
		return diag("%zu byte raw RSA public key %zu byte modulus is shorter than RFC minimum %d",
			    rr.len, modulus.len, RSA_MIN_OCTETS_RFC);
	}
	if (modulus.len < RSA_MIN_OCTETS) {
		return diag("%zu byte raw RSA public key %zu byte modulus is shorter than minimum %d",
			    rr.len, modulus.len, RSA_MIN_OCTETS);
	}
	struct hash_signature scratch_signature;
	size_t max_hash_size = sizeof(scratch_signature.ptr/*array*/);
	if (modulus.len > max_hash_size) {
		return diag("%zu byte raw RSA public key %zu byte modulus is longer than maximum %zu",
			    rr.len, modulus.len, max_hash_size);
	}

	/*
	 * Step 2: all looks good, export the slices
	 */
	*e = exponent;
	*n = modulus;
	return NULL;
}

static diag_t RSA_ipseckey_rdata_to_pubkey_content(shunk_t ipseckey_pubkey,
						   struct pubkey_content *pkc)
{
	/* unpack */
	shunk_t exponent;
	shunk_t modulus;
	diag_t d = pubkey_ipseckey_rdata_to_rsa_pubkey(ipseckey_pubkey, &exponent, &modulus);
	if (d != NULL) {
		return d;
	}

	/*
	 * Allocate the public key, giving it its own arena.
	 *
	 * Since the arena contains everything allocated to the
	 * seckey, error recovery just requires freeing that.
	 */

	PRArenaPool *arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
	if (arena == NULL) {
		return diag_nss_error("allocating RSA arena");
	}

	SECKEYPublicKey *seckey = PORT_ArenaZNew(arena, SECKEYPublicKey);
	if (seckey == NULL) {
		diag_t d = diag_nss_error("allocating RSA SECKEYPublicKey");
		PORT_FreeArena(arena, /*zero?*/PR_TRUE);
		return d;
	}

	seckey->arena = arena;
	seckey->keyType = rsaKey;
	seckey->pkcs11Slot = NULL;
	seckey->pkcs11ID = CK_INVALID_HANDLE;
	SECKEYRSAPublicKey *rsa = &seckey->u.rsa;

	/*
	 * Copy n and e to form the public key in the SECKEYPublicKey
	 * data structure
	 */

	if (SECITEM_MakeItem(arena, &rsa->modulus, modulus.ptr, modulus.len) != SECSuccess) {
		diag_t d = diag_nss_error("copying 'n' (modulus) to RSA SECKEYPublicKey");
		PORT_FreeArena(arena, /*zero?*/PR_TRUE);
		return d;
	}

	if (SECITEM_MakeItem(arena, &rsa->publicExponent, exponent.ptr, exponent.len) != SECSuccess) {
		diag_t d = diag_nss_error("copying 'e' (exponent) to RSA public key");
		PORT_FreeArena(arena, /*zero?*/PR_TRUE);
		return d;
	}

	/* ckaid */
	SECItem *nss_ckaid = PK11_MakeIDFromPubKey(&rsa->modulus);
	if (nss_ckaid == NULL) {
		diag_t d = diag_nss_error("unable to compute 'CKAID' from modulus");
		PORT_FreeArena(arena, /*zero?*/PR_TRUE);
		return d;
	}
	if (DBGP(DBG_BASE)) {
		DBG_dump("computed rsa CKAID",
			 nss_ckaid->data, nss_ckaid->len);
	}
	pkc->ckaid = ckaid_from_secitem(nss_ckaid);
	SECITEM_FreeItem(nss_ckaid, PR_TRUE);

	err_t kberr = keyblob_to_keyid(ipseckey_pubkey.ptr, ipseckey_pubkey.len, &pkc->keyid);
	if (kberr != NULL) {
		diag_t d = diag("%s", kberr);
		PORT_FreeArena(arena, /*zero?*/PR_TRUE);
		return d;
	}

	pkc->type = &pubkey_type_rsa;
	pkc->public_key = seckey;
	dbg_alloc("rsa->public_key", pkc->public_key, HERE);

	/* generate the CKAID */

	if (DBGP(DBG_BASE)) {
		/* pubkey information isn't DBG_PRIVATE */
		DBG_log("keyid: *%s", str_keyid(pkc->keyid));
		DBG_dump_hunk("  n", modulus);
		DBG_dump_hunk("  e", exponent);
		DBG_dump_hunk("  CKAID", pkc->ckaid);
	}

	return NULL;
}

static void RSA_free_pubkey_content(struct pubkey_content *rsa)
{
	SECKEY_DestroyPublicKey(rsa->public_key);
	dbg_free("rsa->public_key", rsa->public_key, HERE);
	rsa->public_key = NULL;
}

static err_t RSA_extract_pubkey_content(struct pubkey_content *pkc,
					SECKEYPublicKey *seckey_public,
					SECItem *cert_ckaid)
{
	chunk_t exponent = same_secitem_as_chunk(seckey_public->u.rsa.publicExponent);
	chunk_t modulus = same_secitem_as_chunk(seckey_public->u.rsa.modulus);
	size_t size;
	form_keyid(exponent, modulus, &pkc->keyid, &size);
	/* up to this point nothing has been allocated */

	/*
	 * PKCS#1 1.5 section 6 requires modulus to have at least 12
	 * octets.
	 *
	 * We actually require more (for security).
	 */
	if (size < RSA_MIN_OCTETS)
		return RSA_MIN_OCTETS_UGH;
	/*
	 * We picked a max modulus size to simplify buffer allocation.
	 */
	struct hash_signature scratch_signature;
	size_t max_hash_size = sizeof(scratch_signature.ptr/*array*/);
	if (modulus.len > max_hash_size) {
		return "RSA modulus too large for signature buffer";
	}

	/* now allocate */
	pkc->type = &pubkey_type_rsa;
	pkc->public_key = SECKEY_CopyPublicKey(seckey_public);
	dbg_alloc("rsa->public_key", pkc->public_key, HERE);
	pkc->ckaid = ckaid_from_secitem(cert_ckaid);
	return NULL;
}

static bool RSA_pubkey_same(const struct pubkey_content *lhs,
			    const struct pubkey_content *rhs)
{
	/*
	 * The "adjusted" length of modulus n in octets:
	 * [RSA_MIN_OCTETS, RSA_MAX_OCTETS].
	 *
	 * According to form_keyid() this is the modulus length less
	 * any leading byte added by DER encoding.
	 *
	 * The adjusted length is used in sign_hash() as the signature
	 * length - wouldn't PK11_SignatureLen be better?
	 *
	 * The adjusted length is used in same_RSA_public_key() as
	 * part of comparing two keys - but wouldn't that be
	 * redundant?  The direct n==n test would pick up the
	 * difference.
	 */
	bool e = hunk_eq(same_secitem_as_shunk(lhs->public_key->u.rsa.publicExponent),
			 same_secitem_as_shunk(rhs->public_key->u.rsa.publicExponent));
	bool n = hunk_eq(same_secitem_as_shunk(lhs->public_key->u.rsa.modulus),
			 same_secitem_as_shunk(rhs->public_key->u.rsa.modulus));
	if (DBGP(DBG_CRYPT)) {
		DBG_log("n did %smatch", n ? "" : "NOT ");
		DBG_log("e did %smatch", e ? "" : "NOT ");
	}

	return lhs == rhs || (e && n);
}

static size_t RSA_strength_in_bits(const struct pubkey *pubkey)
{
	return SECKEY_PublicKeyStrengthInBits(pubkey->content.public_key);
}

const struct pubkey_type pubkey_type_rsa = {
	.name = "RSA",
	.private_key_kind = SECRET_RSA, /* XXX: delete field */
	.free_pubkey_content = RSA_free_pubkey_content,
	.ipseckey_rdata_to_pubkey_content = RSA_ipseckey_rdata_to_pubkey_content,
	.pubkey_content_to_ipseckey_rdata = RSA_pubkey_content_to_ipseckey_rdata,
	.extract_pubkey_content = RSA_extract_pubkey_content,
	.pubkey_same = RSA_pubkey_same,
	.strength_in_bits = RSA_strength_in_bits,
};

/* returns the length of the result on success; 0 on failure */
static struct hash_signature RSA_raw_sign_hash(const struct secret_pubkey_stuff *pks,
					       const uint8_t *hash_val, size_t hash_len,
					       const struct hash_desc *hash_algo,
					       struct logger *logger)
{
	dbg("%s: started using NSS", __func__);

	if (!pexpect(hash_algo == &ike_alg_hash_sha1)) {
		return (struct hash_signature) { .len = 0, };
	}

	if (!pexpect(pks->private_key != NULL)) {
		dbg("no private key!");
		return (struct hash_signature) { .len = 0, };
	}

	SECItem data = {
		.type = siBuffer,
		.len = hash_len,
		.data = DISCARD_CONST(uint8_t *, hash_val),
	};

	struct hash_signature sig = { .len = PK11_SignatureLen(pks->private_key), };
	passert(sig.len <= sizeof(sig.ptr/*array*/));
	SECItem signature = {
		.type = siBuffer,
		.len = sig.len,
		.data = sig.ptr,
	};

	SECStatus s = PK11_Sign(pks->private_key, &signature, &data);
	if (s != SECSuccess) {
		/* PR_GetError() returns the thread-local error */
		llog_nss_error(RC_LOG, logger,
			       "PK11_Sign() function failed");
		return (struct hash_signature) { .len = 0, };
	}

	dbg("%s: ended using NSS", __func__);
	return sig;
}

static bool RSA_authenticate_signature_raw_rsa(const struct crypt_mac *expected_hash,
					       shunk_t signature,
					       struct pubkey *pubkey,
					       const struct hash_desc *unused_hash_algo UNUSED,
					       diag_t *fatal_diag,
					       struct logger *logger)
{
	SECKEYPublicKey *seckey_public = pubkey->content.public_key;

	/* decrypt the signature -- reversing RSA_sign_hash */
	if (signature.len != (size_t)seckey_public->u.rsa.modulus.len) {
		/* XXX notification: INVALID_KEY_INFORMATION */
		*fatal_diag = NULL;
		return false;
	}

	if (DBGP(DBG_BASE)) {
		DBG_dump_hunk("NSS RSA: verifying that decrypted signature matches hash: ",
			      *expected_hash);
	}

	/*
	 * Use the same space used by the out going hash.
	 */

	SECItem decrypted_signature = {
		.type = siBuffer,
	};

	if (SECITEM_AllocItem(NULL, &decrypted_signature, signature.len) == NULL) {
		llog_nss_error(RC_LOG, logger, "allocating space for decrypted RSA signature");
		return false;
	}

	/* NSS doesn't do const */
	const SECItem encrypted_signature = {
		.type = siBuffer,
		.data = DISCARD_CONST(unsigned char *, signature.ptr),
		.len  = signature.len,
	};

	if (PK11_VerifyRecover(seckey_public, &encrypted_signature, &decrypted_signature,
			       lsw_nss_get_password_context(logger)) != SECSuccess) {
		SECITEM_FreeItem(&decrypted_signature, PR_FALSE/*not-pointer*/);
		dbg("NSS RSA verify: decrypting signature is failed");
		*fatal_diag = NULL;
		return false;
	}

	if (DBGP(DBG_CRYPT)) {
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {
			jam_string(buf, "NSS RSA verify: decrypted sig: ");
			jam_nss_secitem(buf, &decrypted_signature);
		}
	}

	/*
	 * Expect the matching hash to appear at the end.  See above
	 * for length check.  It may, or may not, be prefixed by a
	 * PKCS#1 1.5 RSA ASN.1 blob.
	 */
	passert(decrypted_signature.len >= expected_hash->len);
	uint8_t *start = (decrypted_signature.data
			  + decrypted_signature.len
			  - expected_hash->len);
	if (!memeq(start, expected_hash->ptr, expected_hash->len)) {
		dbg("RSA Signature NOT verified");
		SECITEM_FreeItem(&decrypted_signature, PR_FALSE/*not-pointer*/);
		*fatal_diag = NULL;
		return false;
	}

	SECITEM_FreeItem(&decrypted_signature, PR_FALSE/*not-pointer*/);
	*fatal_diag = NULL;
	return true;
}

static size_t RSA_jam_auth_method(struct jambuf *buf,
				  const struct pubkey_signer *signer,
				  const struct pubkey *pubkey,
				  const struct hash_desc *hash)
{
	return jam(buf, "%d-bit %s with %s",
		   SECKEY_PublicKeyStrengthInBits(pubkey->content.public_key),
		   signer->name, hash->common.fqn);
}

const struct pubkey_signer pubkey_signer_raw_rsa = {
	.name = "RSA",
	.digital_signature_blob = DIGITAL_SIGNATURE_BLOB_ROOF,
	.type = &pubkey_type_rsa,
	.sign_hash = RSA_raw_sign_hash,
	.authenticate_signature = RSA_authenticate_signature_raw_rsa,
	.jam_auth_method = RSA_jam_auth_method,
};

/* returns the length of the result on success; 0 on failure */
static struct hash_signature RSA_pkcs1_1_5_sign_hash(const struct secret_pubkey_stuff *pks,
						     const uint8_t *hash_val, size_t hash_len,
						     const struct hash_desc *hash_algo,
						     struct logger *logger)
{
	dbg("%s: started using NSS", __func__);

	if (!pexpect(pks->private_key != NULL)) {
		dbg("no private key!");
		return (struct hash_signature) { .len = 0, };
	}

	SECItem digest = {
		.type = siBuffer,
		.len = hash_len,
		.data = DISCARD_CONST(uint8_t *, hash_val),
	};

	/*
	 * XXX: the call expects the OID TAG for the hash algorithm
	 * used to generate the signature.
	 */
	SECItem signature_result = {0};
	SECStatus s = SGN_Digest(pks->private_key,
				 hash_algo->nss.oid_tag,
				 &signature_result, &digest);
	if (s != SECSuccess) {
		/* PR_GetError() returns the thread-local error */
		enum_buf tb;
		llog_nss_error(RC_LOG, logger,
			       "SGN_Digest(%s) function failed",
			       str_nss_oid(hash_algo->nss.oid_tag, &tb));
		return (struct hash_signature) { .len = 0, };
	}

	/* save the signature, free the returned pointer */

	struct hash_signature signature = {
		.len = PK11_SignatureLen(pks->private_key),
	};
	passert(signature.len <= sizeof(signature.ptr/*array*/));
	memcpy(signature.ptr, signature_result.data, signature.len);
	PORT_Free(signature_result.data);

	dbg("%s: ended using NSS", __func__);
	return signature;
}

static bool RSA_authenticate_signature_pkcs1_1_5_rsa(const struct crypt_mac *expected_hash,
						     shunk_t signature,
						     struct pubkey *pubkey,
						     const struct hash_desc *unused_hash_algo UNUSED,
						     diag_t *fatal_diag,
						     struct logger *logger)
{
	SECKEYPublicKey *seckey_public = pubkey->content.public_key;

	/* decrypt the signature -- reversing RSA_sign_hash */
	if (signature.len != (size_t)seckey_public->u.rsa.modulus.len) {
		/* XXX notification: INVALID_KEY_INFORMATION */
		*fatal_diag = NULL;
		return false;
	}

	if (DBGP(DBG_BASE)) {
		DBG_dump_hunk("NSS RSA: verifying that decrypted signature matches hash: ",
			      *expected_hash);
	}

	/*
	 * Use the same space used by the out going hash.
	 */

	SECItem decrypted_signature = {
		.type = siBuffer,
	};

	if (SECITEM_AllocItem(NULL, &decrypted_signature, signature.len) == NULL) {
		llog_nss_error(RC_LOG, logger, "allocating space for decrypted RSA signature");
		return false;
	}

	/* NSS doesn't do const */
	const SECItem encrypted_signature = {
		.type = siBuffer,
		.data = DISCARD_CONST(unsigned char *, signature.ptr),
		.len  = signature.len,
	};

	if (PK11_VerifyRecover(seckey_public, &encrypted_signature, &decrypted_signature,
			       lsw_nss_get_password_context(logger)) != SECSuccess) {
		SECITEM_FreeItem(&decrypted_signature, PR_FALSE/*not-pointer*/);
		dbg("NSS RSA verify: decrypting signature is failed");
		*fatal_diag = NULL;
		return false;
	}

	if (DBGP(DBG_CRYPT)) {
		LLOG_JAMBUF(DEBUG_STREAM, logger, buf) {
			jam_string(buf, "NSS RSA verify: decrypted sig: ");
			jam_nss_secitem(buf, &decrypted_signature);
		}
	}

	/*
	 * Expect the matching hash to appear at the end.  See above
	 * for length check.  It may, or may not, be prefixed by a
	 * PKCS#1 1.5 RSA ASN.1 blob.
	 */
	passert(decrypted_signature.len >= expected_hash->len);
	uint8_t *start = (decrypted_signature.data
			  + decrypted_signature.len
			  - expected_hash->len);
	if (!memeq(start, expected_hash->ptr, expected_hash->len)) {
		dbg("RSA Signature NOT verified");
		SECITEM_FreeItem(&decrypted_signature, PR_FALSE/*not-pointer*/);
		*fatal_diag = NULL;
		return false;
	}

	SECITEM_FreeItem(&decrypted_signature, PR_FALSE/*not-pointer*/);
	*fatal_diag = NULL;
	return true;
}

const struct pubkey_signer pubkey_signer_raw_pkcs1_1_5_rsa = {
	.name = "PKCS#1 1.5 RSA", /* name from RFC 7427 */
	.digital_signature_blob = DIGITAL_SIGNATURE_BLOB_ROOF,
	.type = &pubkey_type_rsa,
	.sign_hash = RSA_pkcs1_1_5_sign_hash,
	.authenticate_signature = RSA_authenticate_signature_pkcs1_1_5_rsa,
	.jam_auth_method = RSA_jam_auth_method,
};

const struct pubkey_signer pubkey_signer_digsig_pkcs1_1_5_rsa = {
	.name = "PKCS#1 1.5 RSA", /* name from RFC 7427 */
	.digital_signature_blob = DIGITAL_SIGNATURE_PKCS1_1_5_RSA_BLOB,
	.type = &pubkey_type_rsa,
	.sign_hash = RSA_pkcs1_1_5_sign_hash,
	.authenticate_signature = RSA_authenticate_signature_pkcs1_1_5_rsa,
	.jam_auth_method = RSA_jam_auth_method,
};

/* returns the length of the result on success; 0 on failure */
static struct hash_signature RSA_rsassa_pss_sign_hash(const struct secret_pubkey_stuff *pks,
						      const uint8_t *hash_val, size_t hash_len,
						      const struct hash_desc *hash_algo,
						      struct logger *logger)
{
	dbg("%s: started using NSS", __func__);

	if (!pexpect(pks->private_key != NULL)) {
		dbg("no private key!");
		return (struct hash_signature) { .len = 0, };
	}

	SECItem data = {
		.type = siBuffer,
		.len = hash_len,
		.data = DISCARD_CONST(uint8_t *, hash_val),
	};

	struct hash_signature sig = { .len = PK11_SignatureLen(pks->private_key), };
	passert(sig.len <= sizeof(sig.ptr/*array*/));
	SECItem signature = {
		.type = siBuffer,
		.len = sig.len,
		.data = sig.ptr,
	};

	const CK_RSA_PKCS_PSS_PARAMS *mech = hash_algo->nss.rsa_pkcs_pss_params;
	if (mech == NULL) {
		llog(RC_LOG, logger,
		     "digital signature scheme not supported for hash algorithm %s",
		     hash_algo->common.fqn);
		return (struct hash_signature) { .len = 0, };
	}

	SECItem mech_item = {
		.type = siBuffer,
		.data = (void*)mech, /* strip const */
		.len = sizeof(*mech),
	};
	SECStatus s = PK11_SignWithMechanism(pks->private_key, CKM_RSA_PKCS_PSS,
					     &mech_item, &signature, &data);
	if (s != SECSuccess) {
		/* PR_GetError() returns the thread-local error */
		llog_nss_error(RC_LOG, logger,
			       "RSA DSS sign function failed");
		return (struct hash_signature) { .len = 0, };
	}

	dbg("%s: ended using NSS", __func__);
	return sig;
}

static bool RSA_authenticate_signature_rsassa_pss(const struct crypt_mac *expected_hash,
						  shunk_t signature,
						  struct pubkey *pubkey,
						  const struct hash_desc *hash_algo,
						  diag_t *fatal_diag,
						  struct logger *logger)
{
	SECKEYPublicKey *seckey_public = pubkey->content.public_key;

	/* decrypt the signature -- reversing RSA_sign_hash */
	if (signature.len != (size_t)seckey_public->u.rsa.modulus.len) {
		/* XXX notification: INVALID_KEY_INFORMATION */
		*fatal_diag = NULL;
		return false;
	}

	if (DBGP(DBG_BASE)) {
		DBG_dump_hunk("NSS RSA: verifying that decrypted signature matches hash: ",
			      *expected_hash);
	}

	/*
	 * Convert the signature into raw form (NSS doesn't do const).
	 */

	const SECItem encrypted_signature = {
		.type = siBuffer,
		.data = DISCARD_CONST(unsigned char *, signature.ptr),
		.len  = signature.len,
	};

	/*
	 * Digital signature scheme with RSA-PSS
	 */
	const CK_RSA_PKCS_PSS_PARAMS *mech = hash_algo->nss.rsa_pkcs_pss_params;
	if (!pexpect(mech != NULL)) {
		dbg("NSS RSA verify: hash algorithm not supported");
		/* internal error? */
		*fatal_diag = NULL;
		return false;
	}

	const SECItem hash_mech_item = {
		.type = siBuffer,
		.data = (void*)mech, /* strip const */
		.len = sizeof(*mech),
	};

	struct crypt_mac hash_data = *expected_hash; /* cast away const */
	const SECItem expected_hash_item = {
		.len = hash_data.len,
		.data = hash_data.ptr,
		.type = siBuffer,
	};

	if (PK11_VerifyWithMechanism(seckey_public, CKM_RSA_PKCS_PSS,
				     &hash_mech_item, &encrypted_signature,
				     &expected_hash_item,
				     lsw_nss_get_password_context(logger)) != SECSuccess) {
		dbg("NSS RSA verify: decrypting signature is failed");
		*fatal_diag = NULL;
		return false;
	}

	*fatal_diag = NULL;
	return true;
}

const struct pubkey_signer pubkey_signer_digsig_rsassa_pss = {
	.name = "RSASSA-PSS", /* name from RFC 7427 */
	.type = &pubkey_type_rsa,
	.digital_signature_blob = DIGITAL_SIGNATURE_RSASSA_PSS_BLOB,
	.sign_hash = RSA_rsassa_pss_sign_hash,
	.authenticate_signature = RSA_authenticate_signature_rsassa_pss,
	.jam_auth_method = RSA_jam_auth_method,
};