1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*
* Cryptographic helper function - calculate DH
*
* Copyright (C) 2006-2008 Michael C. Richardson <mcr@xelerance.com>
* Copyright (C) 2007-2009 Paul Wouters <paul@xelerance.com>
* Copyright (C) 2009 Avesh Agarwal <avagarwa@redhat.com>
* Copyright (C) 2009 David McCullough <david_mccullough@securecomputing.com>
* Copyright (C) 2012-2013 Paul Wouters <paul@libreswan.org>
* Copyright (C) 2015-2019 Paul Wouters <pwouters@redhat.com>
* Copyright (C) 2017 Antony Antony <antony@phenome.org>
* Copyright (C) 2017-2019 Andrew Cagney <cagney@gnu.org>
* Copyright (C) 2019 D. Hugh Redelmeier <hugh@mimosa.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <https://www.gnu.org/licenses/gpl2.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* This code was developed with the support of IXIA communications.
*
*/
#include "ike_alg.h"
#include "crypt_symkey.h"
#include "defs.h"
#include "log.h"
#include "ikev2_prf.h"
#include "crypt_dh.h"
#include "state.h"
#include "crypt_cipher.h"
void calc_v2_ike_keymat(struct state *st,
PK11SymKey *skeyseed,
const ike_spis_t *ike_spis)
{
struct logger *logger = st->logger;
/* now we have to generate the keys for everything */
const struct encrypt_desc *cipher = st->st_oakley.ta_encrypt;
const struct prf_desc *prf = st->st_oakley.ta_prf;
const struct integ_desc *integ = st->st_oakley.ta_integ;
size_t key_size = st->st_oakley.enckeylen / BITS_IN_BYTE;
size_t salt_size = cipher->salt_size;
/* need to know how many bits to generate */
/* SK_d needs PRF hasher key bytes */
/* SK_p needs PRF hasher*2 key bytes */
/* SK_e needs key_size*2 key bytes */
/* ..._salt needs salt_size*2 bytes */
/* SK_a needs integ's key size*2 bytes */
PASSERT(logger, st->st_ni.len > 0);
PASSERT(logger, st->st_nr.len > 0);
int skd_bytes = prf->prf_key_size;
int skp_bytes = prf->prf_key_size;
int integ_size = integ != NULL ? integ->integ_keymat_size : 0;
size_t total_keysize = skd_bytes + 2*skp_bytes + 2*key_size + 2*salt_size + 2*integ_size;
PK11SymKey *finalkey = ikev2_ike_sa_keymat(prf, skeyseed,
st->st_ni, st->st_nr,
ike_spis,
total_keysize, logger);
size_t next_byte = 0;
st->st_skey_d_nss = key_from_symkey_bytes("SK_d", finalkey,
next_byte, skd_bytes,
HERE, logger);
next_byte += skd_bytes;
st->st_skey_ai_nss = key_from_symkey_bytes("SK_ai", finalkey,
next_byte, integ_size,
HERE, logger);
next_byte += integ_size;
st->st_skey_ar_nss = key_from_symkey_bytes("SK_ar", finalkey,
next_byte, integ_size,
HERE, logger);
next_byte += integ_size;
/*
* The initiator encryption key and salt are extracted
* together.
*/
st->st_skey_ei_nss = encrypt_key_from_symkey_bytes("SK_ei",
cipher,
next_byte, key_size,
finalkey,
HERE, logger);
next_byte += key_size;
st->st_skey_initiator_salt = chunk_from_symkey_bytes("initiator salt",
finalkey,
next_byte, salt_size,
logger, HERE);
next_byte += salt_size;
/*
* The responder encryption key and salt are extracted
* together.
*/
st->st_skey_er_nss = encrypt_key_from_symkey_bytes("SK_er_k",
cipher,
next_byte, key_size,
finalkey,
HERE, logger);
next_byte += key_size;
st->st_skey_responder_salt = chunk_from_symkey_bytes("responder salt",
finalkey, next_byte,
salt_size,
logger, HERE);
next_byte += salt_size;
/*
* PPK and AUTH NULL
*/
st->st_skey_pi_nss = key_from_symkey_bytes("SK_pi", finalkey,
next_byte, skp_bytes,
HERE, logger);
/* store copy of SK_pi_k for later use in authnull */
st->st_skey_chunk_SK_pi = chunk_from_symkey("chunk_SK_pi", st->st_skey_pi_nss, logger);
next_byte += skp_bytes;
st->st_skey_pr_nss = key_from_symkey_bytes("SK_pr", finalkey,
next_byte, skp_bytes,
HERE, logger);
/* store copy of SK_pr_k for later use in authnull */
st->st_skey_chunk_SK_pr = chunk_from_symkey("chunk_SK_pr", st->st_skey_pr_nss, logger);
next_byte += skp_bytes;
ldbgf(DBG_CRYPT, logger, "NSS ikev2: finished computing individual keys for IKEv2 SA");
symkey_delref(logger, "finalkey", &finalkey);
switch (st->st_sa_role) {
case SA_INITIATOR:
/* encrypt outbound uses I */
st->st_ike_encrypt_cipher_context =
cipher_context_create(st->st_oakley.ta_encrypt,
ENCRYPT, FILL_WIRE_IV,
st->st_skey_ei_nss,
HUNK_AS_SHUNK(st->st_skey_initiator_salt),
st->logger);
/* decrypt inbound uses R */
st->st_ike_decrypt_cipher_context =
cipher_context_create(st->st_oakley.ta_encrypt,
DECRYPT, USE_WIRE_IV,
st->st_skey_er_nss,
HUNK_AS_SHUNK(st->st_skey_responder_salt),
st->logger);
break;
case SA_RESPONDER:
/* encrypt outbound uses R */
st->st_ike_encrypt_cipher_context =
cipher_context_create(st->st_oakley.ta_encrypt,
ENCRYPT, FILL_WIRE_IV,
st->st_skey_er_nss,
HUNK_AS_SHUNK(st->st_skey_responder_salt),
st->logger);
/* decrypt inbound uses I */
st->st_ike_decrypt_cipher_context =
cipher_context_create(st->st_oakley.ta_encrypt,
DECRYPT, USE_WIRE_IV,
st->st_skey_ei_nss,
HUNK_AS_SHUNK(st->st_skey_initiator_salt),
st->logger);
break;
default:
bad_case(st->st_sa_role);
}
st->hidden_variables.st_skeyid_calculated = true;
}
|