File: server_pool.c

package info (click to toggle)
libreswan 5.2-2.3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 81,644 kB
  • sloc: ansic: 129,988; sh: 32,018; xml: 20,646; python: 10,303; makefile: 3,022; javascript: 1,506; sed: 574; yacc: 511; perl: 264; awk: 52
file content (648 lines) | stat: -rw-r--r-- 19,376 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/* Pluto's helper thread pool, for libreswan
 *
 * Copyright (C) 2004-2007 Michael C. Richardson <mcr@xelerance.com>
 * Copyright (C) 2004-2010 Paul Wouters <paul@xelerance.com>
 * Copyright (C) 2006 Luis F. Ortiz <lfo@polyad.org>
 * Copyright (C) 2008-2009 David McCullough <david_mccullough@securecomputing.com>
 * Copyright (C) 2008 Anthony Tong <atong@TrustedCS.com>
 * Copyright (C) 2009 Avesh Agarwal <avagarwa@redhat.com>
 * Copyright (C) 2009 Stefan Arentz <stefan@arentz.ca>
 * Copyright (C) 2010 Tuomo Soini <tis@foobar.fi>
 * Copyright (C) 2012-2013 Paul Wouters <paul@libreswan.org>
 * Copyright (C) 2017-2019 Andrew Cagney <cagney@gnu.org>
 * Copyright (C) 2019 Paul Wouters <pwouters@redhat.com>
 * Copyright (C) 2019 D. Hugh Redelmeier <hugh@mimosa.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <https://www.gnu.org/licenses/gpl2.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * This code was developed with the support of IXIA communications.
 *
 */

#include <pthread.h>    /* Must be the first include file */
#include <unistd.h>	/* for sleep() */
#include <limits.h>	/* for UINT_MAX, ULONG_MAX */

#include "ttodata.h"
#include "refcnt.h"

#include "defs.h"
#include "log.h"
#include "state.h"
#include "server.h"
#include "whack_shutdown.h"		/* for exiting_pluto; */
#include "server_pool.h"
#include "list_entry.h"
#include "pluto_timing.h"
#include "connections.h"
#include "demux.h"			/* for md_addref() md_delref() */

#ifdef USE_SECCOMP
# include "pluto_seccomp.h"
#endif

static callback_cb helper_thread_stopped_callback;	/* type assertion */
static resume_cb handle_helper_answer;			/* type assertion */
static callback_cb inline_worker;			/* type assertion */
static callback_cb call_server_helpers_stopped_callback; /* type assertion */
/*
 * The job structure
 *
 * Pluto is an event-driven transaction system.  Each transaction must
 * take a very small slice of time.  Those that cannot, must be broken
 * into multiple transactions and the state carried between them
 * cannot be on the stack or in simple global variables.
 *
 * A job is used to hold such state.
 *
 * XXX:
 *
 * Define job_id_t and helper_id_t as enums so that GCC 10 will detect
 * and complain when code attempts to assign the wrong type.

 * An enum's size is always an <<int>.  Presumably this is so that the
 * size of the declaration <<enum foo;>> (i.e., with no other
 * information) is always known - this means the upper bound is always
 * UINT_MAX.  See note further down on overflow.
 */

typedef enum { JOB_ID_MIN = 1, JOB_ID_MAX = UINT_MAX, } job_id_t;
typedef enum { HELPER_ID_MIN = 1, HELPER_ID_MAX = UINT_MAX, } helper_id_t;

struct job {
	struct task *task;
	const struct task_handler *handler;
	struct list_entry backlog;
	so_serial_t callback_so;		/* sponsoring state-object's serial number */
	so_serial_t task_so;			/* sponsoring state-object's serial number */
	struct msg_digest *md;
	bool cancelled;
	where_t where;
	job_id_t job_id;
	helper_id_t helper_id;
	struct cpu_usage time_used;

	/* where to send messages */
	struct logger *logger;
};

#define PRI_JOB "job %u helper %u "PRI_SO"/"PRI_SO" %s (%s)"
#define pri_job(JOB)							\
	JOB->job_id,							\
		JOB->helper_id,						\
		pri_so(JOB->callback_so),				\
		pri_so(JOB->task_so),					\
		JOB->where->func,					\
		JOB->handler->name

/*
 * The work queue.  Accesses must be locked.
 */

static size_t jam_backlog(struct jambuf *buf, const void *data)
{
	if (data == NULL) {
		return jam(buf, "no job");
	}

	size_t s = 0;
	const struct job *job = data;
	s += jam(buf, "job %ju", (uintmax_t)job->job_id);
	if (job->callback_so != SOS_NOBODY) {
		s += jam(buf, " state "PRI_SO, pri_so(job->callback_so));
	}
	if (job->task_so != SOS_NOBODY && job->task_so != job->callback_so) {
		s += jam(buf, " state #%lu", pri_so(job->task_so));
	}
	if (job->helper_id != 0) {
		s += jam(buf, " helper %u", job->helper_id);
	}
	if (job->cancelled) {
		s += jam(buf, " cancelled");
	}
	if (job->where != NULL) {
		s += jam(buf, " %s", job->where->func);
	}
	if (job->handler != NULL) {
		s += jam(buf, " (%s)", job->handler->name);
	}
	return s;
}

LIST_INFO(job, backlog, backlog_info, jam_backlog);

static pthread_mutex_t backlog_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t backlog_cond = PTHREAD_COND_INITIALIZER;

struct list_head backlog = INIT_LIST_HEAD(&backlog, &backlog_info);
static int backlog_queue_len = 0;

static void message_helpers(struct job *job)
{
	pthread_mutex_lock(&backlog_mutex);
	if (job != NULL) {
		insert_list_entry(&backlog, &job->backlog);
		backlog_queue_len++;
	}
	/* wake up threads waiting for work */
	pthread_cond_signal(&backlog_cond);
	pthread_mutex_unlock(&backlog_mutex);
}

/*
 * Note: this per-helper struct is never modified in a helper thread
 */

struct helper_thread {
	struct logger *logger;
	helper_id_t helper_id;
	pthread_t pid;
};

/* may be NULL if we are to do all the work ourselves */

static struct helper_thread *helper_threads = NULL;
static unsigned helper_threads_started = 0;
static unsigned helper_threads_stopped = 0;

/*
 * If there are any helper threads, this code is always executed IN A HELPER
 * THREAD. Otherwise it is executed in the main (only) thread.
 */

static void do_job(struct job *job, helper_id_t helper_id)
{
	logtime_t start = logtime_start(job->logger);

	if (job->cancelled) {
		ldbg(job->logger, PRI_JOB": skipping as cancelled", pri_job(job));
	} else {
		ldbg(job->logger, PRI_JOB": started", pri_job(job));
		job->handler->computer_fn(job->logger, job->task, helper_id);
		ldbg(job->logger, PRI_JOB": finished", pri_job(job));
	}

	job->time_used = logtime_stop(&start, PRI_JOB, pri_job(job));
	schedule_resume("sending job back to main thread",
			job->callback_so, &job->md/*stolen*/,
			handle_helper_answer, job);
}

/* IN A HELPER THREAD */
static void *helper_thread(void *arg)
{
	const struct helper_thread *w = arg;
	ldbg(w->logger, "starting thread");

#ifdef USE_SECCOMP
	init_seccomp_cryptohelper(w->helper_id, w->logger);
#else
	llog(RC_LOG, w->logger, "seccomp security for helper not supported");
#endif

	/* OS X does not have pthread_setschedprio */
#if USE_PTHREAD_SETSCHEDPRIO
	int status = pthread_setschedprio(pthread_self(), 10);
	ldbg(w->logger, "status value returned by setting the priority of this thread: %d", status);
#endif

	while (true) {
		struct job *job = NULL;
		pthread_mutex_lock(&backlog_mutex);
		{
			/*
			 * Search the backlog[] for something to do.
			 * If needed wait.
			 */
			pexpect(job == NULL);
			while (!exiting_pluto) {
				/* grab the next entry, if there is one */
				pexpect(job == NULL);
				FOR_EACH_LIST_ENTRY_OLD2NEW(job, &backlog) { break; }
				if (job != NULL) {
					/*
					 * Assign the entry to this
					 * thread, removing it from
					 * the backlog.
					 *
					 * XXX: logged when job
					 * started.
					 */
					remove_list_entry(&job->backlog);
					job->helper_id = w->helper_id;
					break;
				}
				dbg("helper %u: waiting for work", w->helper_id);
				pthread_cond_wait(&backlog_cond, &backlog_mutex);
			}
			if (job == NULL) {
				/*
				 * No JOB implies pluto is exiting but
				 * not reverse - could grab a JOB in
				 * parallel to pluto starting to exit.
				 */
				pexpect(exiting_pluto);
			}
		}
		pthread_mutex_unlock(&backlog_mutex);
		if (job == NULL) {
			/* per above, must be shutting down */
			break;
		}
		/* might be cancelled */
		if (impair.helper_thread_delay.enabled) {
			llog(RC_LOG, job->logger,
			     "IMPAIR: "PRI_JOB": helper is pausing for %u seconds",
			     pri_job(job), impair.helper_thread_delay.value);
			sleep(impair.helper_thread_delay.value);
		}
		do_job(job, w->helper_id);
	}

	dbg("helper %u: telling main thread that it is exiting", w->helper_id);
	schedule_callback("helper stopped", deltatime(0), SOS_NOBODY,
			  helper_thread_stopped_callback, NULL);
	return NULL;
}

/*
 * Do the work 'inline' which really means on the event queue.
 *
 * Step one is to perform the crypto in a state-free context (just
 * like for a worker thread); and step two is to resume the thread
 * with the possibly cancelled result.
 */

static void inline_worker(const char *story UNUSED, struct state *unused_st UNUSED, void *arg)
{
	struct job *job = arg;
	/* might be cancelled */
	do_job(job, -1);
}

/*
 * send_crypto_helper_request is called with a request to do some
 * cryptographic operations along with a continuation structure,
 * which will be used to deal with the response.
 *
 * See also comments prefixing the typedef for crypto_req_cont_func.
 *
 * struct job *j:
 *
 *	Points to a heap-allocated struct.  The caller transfers
 *	ownership (i.e responsibility to free) to us.  (We or our
 *	allies will free it after the continuation function is called
 *	or failure is determined.)
 *
 * If a state is deleted (which will cancel any outstanding crypto
 * request), then job->cancelled will be set true.
 *
 * Return values:
 *
 *	STF_FAIL_v1N: failure; message already logged.
 *		STF not called.
 *
 *	STF_SUSPEND: computation queued for later completion.
 *		STF will be called in the indefinite future.
 *		Resources must be preserved until then.
 *
 * Suggested life-cycle of a resource like a msg_digest:
 *
 * - Note: not implemented by this mechanism, just a convention
 *   for the callers.
 *
 * - resource should be preserved in the case of STF_SUSPEND since
 *   it will be needed in the future.
 *
 */

void submit_task(struct state *callback_sa,
		 struct state *task_sa,
		 struct msg_digest *md,
		 bool detach_whack,
		 struct task *task,
		 const struct task_handler *handler,
		 where_t where)
{
	if (callback_sa->st_offloaded_task != NULL) {
		llog_pexpect(callback_sa->logger, where,
			     "state already has outstanding crypto ["PRI_WHERE"]",
			     pri_where(callback_sa->st_offloaded_task->where));
		return;
	}

	struct job *job = alloc_thing(struct job, where->func);
	dbg_alloc("job", job, HERE);
	job->cancelled = false;
	job->where = where;
	init_list_entry(&backlog_info, job, &job->backlog);
	job->callback_so = callback_sa->st_serialno;
	job->task_so = task_sa->st_serialno;

	/*
	 * set up the id
	 *
	 * XXX: job_id is used as a short lifetime identifier so
	 * rolling (after several years of up-time) isn't a concern.
	 */
	static job_id_t job_id = 0;	/* counter for generating unique request IDs */
	job->job_id = ++job_id;

	job->handler = handler;
	job->task = task;

	/*
	 * Save in case it needs to be cancelled.
	 */
	task_sa->st_offloaded_task = job;
	job->logger = clone_logger(task_sa->logger, HERE);
	job->md = md_addref(md);
	ldbg(job->logger, PRI_JOB": added to pending queue", pri_job(job));

	if (callback_sa->st_ike_version == IKEv1) {
		/*
		 * IKEv1: schedule a timeout event to cap the suspend
		 * time.  STF_SUSPEND will be looking for this.
		 *
		 * IKEv2: While initiating and processing a message
		 * there's the TIMEOUT_INITIATOR, TIMEOUT_RESPONDER,
		 * or TIMEOUT_RESPONSE timer running, hence no need
		 * for this additional timer.  When calculating crypto
		 * in the background (for instance when assembling
		 * fragments), there's a DISCARD timer running.
		 */
		delete_v1_event(callback_sa);
		event_schedule(EVENT_v1_CRYPTO_TIMEOUT, EVENT_CRYPTO_TIMEOUT_DELAY, callback_sa);
	}

	/*
	 * do it all ourselves?
	 */
	if (helper_threads == NULL) {
		/*
		 * Invoke the inline worker as if it is on a separate
		 * thread - no resume (aka unsuspend) and no state
		 * (hence SOS_NOBODY).  Caller will return
		 * STF_SUSPEND, and then the event-loop will invoke
		 * the callback.
		 */
		deltatime_t delay = deltatime(0);
		if (impair.helper_thread_delay.enabled) {
			if (impair.helper_thread_delay.value == 0) {
				static uint64_t warp = 0;
				delay = deltatime_from_milliseconds(++warp);
				llog(RC_LOG, job->logger, "IMPAIR: "PRI_JOB": helper is warped by %ju milliseconds",
				     pri_job(job), warp);
			} else {
				delay = deltatime(impair.helper_thread_delay.value);
				llog(RC_LOG, job->logger, "IMPAIR: "PRI_JOB": helper is pausing for %ju seconds",
				     pri_job(job), deltasecs(delay));
			}
		}

		if (detach_whack) {
			whack_detach(job->logger, task_sa->logger);
		}

		schedule_callback("inline crypto", delay,
				  SOS_NOBODY, inline_worker, job);
		return;
	}

	if (detach_whack) {
		whack_detach(job->logger, task_sa->logger);
	}

	/* add to backlog */
	message_helpers(job);
}

void delete_cryptographic_continuation(struct state *st)
{
	passert(in_main_thread());
	passert(st->st_serialno != SOS_NOBODY);
	struct job *job = st->st_offloaded_task;
	if (job == NULL) {
		return;
	}
	pmemory(job);
	/* shut it down */
	job->cancelled = true;
	st->st_offloaded_task = NULL;
	/* thread pool will throw the task back for cleanup */
}

/*
 * This function is called when a helper passes work back to the main
 * thread using the event loop.
 *
 */

static void free_job(struct job **jobp)
{
	struct job *job = *jobp;
	passert(job->handler->cleanup_cb != NULL);
	job->handler->cleanup_cb(&job->task);
	pexpect(job->task == NULL); /* did your job */
	md_delref(&job->md);
	/* now free up the continuation */
	free_logger(&job->logger, HERE);
	dbg_free("job", job, HERE);
	pfree(job);
	*jobp = NULL;
}

static stf_status handle_helper_answer(struct state *callback_sa,
				       struct msg_digest *md,
				       void *arg)
{
	passert(in_main_thread());
	struct job *job = arg;
	passert(job->handler != NULL);
	struct state *task_sa = state_by_serialno(job->task_so);

	/*
	 * call the continuation (skip if suppressed)
	 */
	stf_status status;
	if (job->cancelled) {
		/* suppressed */
		ldbg(job->logger, PRI_JOB": job cancelled!", pri_job(job));
		PEXPECT(job->logger, task_sa == NULL || task_sa->st_offloaded_task == NULL);
		status = STF_SKIP_COMPLETE_STATE_TRANSITION;
	} else if (callback_sa == NULL) {
		/* oops, the callback state disappeared! */
		llog_pexpect(job->logger, HERE, PRI_JOB": callback disappeared!", pri_job(job));
		status = STF_SKIP_COMPLETE_STATE_TRANSITION;
	} else if (task_sa == NULL) {
		/* oops, the task state disappeared! */
		llog_pexpect(job->logger, HERE, PRI_JOB": task disappeared!", pri_job(job));
		status = STF_SKIP_COMPLETE_STATE_TRANSITION;
	} else {
		ldbg(job->logger, PRI_JOB": calling state's callback function", pri_job(job));
		PEXPECT(job->logger, task_sa->st_offloaded_task == job);
		task_sa->st_offloaded_task = NULL;
		/* bill the thread time */
		cpu_usage_add(task_sa->st_timing.helper_usage, job->time_used);
		/* wall clock time not billed */
		/* run the callback */
		PASSERT(job->logger, job->handler->completed_cb != NULL);
		status = job->handler->completed_cb(callback_sa, md, job->task);
	}
	esb_buf buf;
	ldbg(job->logger, PRI_JOB": final status %s; cleaning up",
	     pri_job(job), str_enum(&stf_status_names, status, &buf));
	free_job(&job);
	return status;
}

/*
 * initialize the helpers.
 *
 * Later we will have to make provisions for helpers that have hardware
 * underneath them, in which case, they may be able to accept many
 * more requests than average.
 *
 */
void start_server_helpers(int nhelpers, struct logger *logger)
{
	/* redundant */
	helper_threads = NULL;
	helper_threads_started = 0;
	helper_threads_stopped = 0;

	/* find out how many CPUs there are, if nhelpers is -1 */
	/* if nhelpers == 0, then we do all the work ourselves */
	if (nhelpers == -1) {
		int ncpu_online;
#if !(defined(macintosh) || (defined(__MACH__) && defined(__APPLE__)))
		ncpu_online = sysconf(_SC_NPROCESSORS_ONLN);
#else
		int mib[2], numcpu;
		size_t len;

		mib[0] = CTL_HW;
		mib[1] = HW_NCPU;
		len = sizeof(numcpu);
		ncpu_online = sysctl(mib, 2, &numcpu, &len, NULL, 0);
#endif
		llog(RC_LOG, logger, "%d CPU cores online", ncpu_online);
		if (ncpu_online < 4)
			nhelpers = ncpu_online;
		else
			nhelpers = ncpu_online - 1;
	}

	if (nhelpers > 0) {
		llog(RC_LOG, logger, "starting up %d helper threads", nhelpers);

		/*
		 * create the threads.  Set nr_helpers_started after
		 * the threads have been created so that shutdown code
		 * only tries to run when there really are threads.
		 */
		helper_threads = alloc_things(struct helper_thread, nhelpers,
					      "pluto helpers");
		for (int n = 0; n < nhelpers; n++) {
			struct helper_thread *w = &helper_threads[n];
			w->helper_id = n + 1; /* i.e., not 0 */
			w->logger = string_logger(HERE, "helper(%d)", w->helper_id);
			int thread_status = pthread_create(&w->pid, NULL,
							   helper_thread, (void *)w);
			if (thread_status != 0) {
				llog(RC_LOG, logger,
					    "failed to start child thread for helper %d, error = %d",
					    n, thread_status);
			} else {
				llog(RC_LOG, logger, "started thread for helper %d", n);
			}
		}
		helper_threads_started = nhelpers;
	} else {
		llog(RC_LOG, logger,
			    "no helpers will be started; all cryptographic operations will be done inline");
	}
}

/*
 * Repeatedly nudge the helper threads until they all exit.
 *
 * Note that pthread_join() doesn't work here: an any-thread join may
 * end up joining an unrelated thread (for instance the CRL helper);
 * and a specific thread join may block waiting for the wrong thread.
 */

static void (*server_helpers_stopped_callback)(void);

static void helper_thread_stopped_callback(const char *story UNUSED,
					   struct state *st UNUSED,
					   void *context UNUSED)
{
	helper_threads_stopped++;
	dbg("one helper thread exited, %u remaining",
	    helper_threads_started-helper_threads_stopped);

	/* wait for more? */
	if (helper_threads_started > helper_threads_stopped) {
		/* poke threads waiting for work */
		message_helpers(NULL);
		return;
	}

	/* all done; cleanup */
	for (unsigned h = 0; h < helper_threads_started; h++) {
		struct helper_thread *w = &helper_threads[h];
		free_logger(&w->logger, HERE);
	}

	pfreeany(helper_threads);
	helper_threads = NULL;
	server_helpers_stopped_callback();
}

static void call_server_helpers_stopped_callback(const char *story UNUSED,
						 struct state *st UNUSED,
						 void *context UNUSED)
{
	server_helpers_stopped_callback();
}

void stop_server_helpers(void (*server_helpers_stopped_cb)(void))
{
	server_helpers_stopped_callback = server_helpers_stopped_cb;
	if (helper_threads_started > 0) {
		/* poke threads waiting for work */
		message_helpers(NULL);
	} else {
		/*
		 * Always finish things using a callback so this call stack
		 * can cleanup all its allocated data.
		 */
		dbg("no helper threads to shutdown");
		pexpect(helper_threads == NULL);
		schedule_callback("no helpers to stop", deltatime(0), SOS_NOBODY,
				  call_server_helpers_stopped_callback, NULL);
	}
}

void free_server_helper_jobs(struct logger *logger)
{
	if (helper_threads_started == helper_threads_stopped) {
		passert(helper_threads == NULL);
		struct job *job = NULL;
		FOR_EACH_LIST_ENTRY_OLD2NEW(job, &backlog) {
			remove_list_entry(&job->backlog);
			free_job(&job);
		}
	} else {
		llog(RC_LOG, logger, "WARNING: helper threads still running");
	}
}