1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/* Copyright © 2014-2019, Stephan Mueller <smueller@chronox.de>
* Copyright © 2020 in2ip B.V.
* Linux Crypto API, based on libkcapi, relicensed to BSD-2 with author's permission
* Author: Stephan Mueller <smueller@chronox.de>
* Modified for librist by: Gijs Peskens <gijs@in2ip.nl>
* Modified for librist by: Sergio Ammirata <sergio@ammirata.net>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#ifdef __linux
#include "linux-crypto.h"
struct linux_crypto {
int sockfd;
int cryptofd;
struct kcapi_handle *handle;
};
int32_t _linux_crypto_send_crypt(struct linux_crypto *ctx,
struct iovec *iov, uint32_t iovlen,
uint32_t enc, const uint8_t *iv)
{
int32_t ret;
char buffer_static[80] = { 0 };
char *buffer_p = buffer_static;
char *buffer_alloc = NULL;
/* plaintext / ciphertext data */
struct cmsghdr *header = NULL;
uint32_t *type = NULL;
struct msghdr msg;
/* IV data */
struct af_alg_iv *alg_iv = NULL;
uint32_t iv_msg_size = CMSG_SPACE(sizeof(*alg_iv) + 16);
uint32_t bufferlen = CMSG_SPACE(sizeof(*type)) + /* Encryption / Decryption */
iv_msg_size; /* IV */
memset(&msg, 0, sizeof(msg));
/* allocate buffer, if static buffer is too small */
if (RIST_UNLIKELY(bufferlen > sizeof(buffer_static))) {
buffer_alloc = calloc(1, bufferlen);
if (!buffer_alloc)
return -ENOMEM;
buffer_p = buffer_alloc;
}
msg.msg_control = buffer_p;
msg.msg_controllen = bufferlen;
msg.msg_iov = iov;
msg.msg_iovlen = iovlen;
/* encrypt/decrypt operation */
header = CMSG_FIRSTHDR(&msg);
if (RIST_UNLIKELY(!header)) {
ret = -EFAULT;
goto out;
}
header->cmsg_level = SOL_ALG;
header->cmsg_type = ALG_SET_OP;
header->cmsg_len = CMSG_LEN(sizeof(*type));
type = (void*)CMSG_DATA(header);
*type = enc;
/* set IV */
header = CMSG_NXTHDR(&msg, header);
if (RIST_UNLIKELY(!header)) {
ret = -EFAULT;
goto out;
}
header->cmsg_level = SOL_ALG;
header->cmsg_type = ALG_SET_IV;
header->cmsg_len = iv_msg_size;
alg_iv = (void*)CMSG_DATA(header);
alg_iv->ivlen = 16;
memcpy(alg_iv->iv, iv, 16);
ret = (int32_t)sendmsg(ctx->cryptofd, &msg, 0);
if (RIST_UNLIKELY(ret < 0))
ret = -errno;
out:
if (buffer_alloc)
free(buffer_alloc);
return ret;
}
int32_t _linux_crypto_read(struct linux_crypto *ctx,
uint8_t *out, uint32_t outlen)
{
int ret;
int32_t totallen = 0;
if (RIST_LIKELY(outlen)) {
do {
ret = (int32_t)read(ctx->cryptofd, out, outlen);
if (ret > 0) {
out += ret;
outlen -= ret;
totallen += ret;
}
} while ((ret > 0 || errno == EINTR) && outlen);
if (RIST_UNLIKELY(ret < 0))
return -errno;
}
return totallen;
}
int32_t _linux_crypto_process(struct linux_crypto *ctx,
const uint8_t *in, uint32_t inlen,
uint8_t *out, uint32_t outlen,
int access,const uint8_t *iv, int enc)
{
RIST_MARK_UNUSED(access);
int32_t totallen = 0;
int32_t ret;
struct iovec iov;
if (RIST_UNLIKELY(!ctx->cryptofd)) {
return -1;
}
while (inlen && outlen) {
uint32_t inprocess = inlen;
uint32_t outprocess = outlen;
iov.iov_base = (void*)(uintptr_t)in;
iov.iov_len = inprocess;
ret = _linux_crypto_send_crypt(ctx, &iov, 1, enc, iv);
if (RIST_UNLIKELY(0 > ret)) {
return ret;
}
ret = _linux_crypto_read(ctx, out, outprocess);
if (RIST_UNLIKELY(ret < 0))
return ret;
totallen += inprocess;
in += inprocess;
inlen -= inprocess;
out += ret;
outlen -= ret;
}
return totallen;
}
int linux_crypto_init(struct linux_crypto **_ctx) {
struct linux_crypto *ctx = calloc(1, sizeof(*ctx));
int ret;
struct sockaddr_alg sa = {
.salg_family = AF_ALG,
.salg_type = "skcipher", /* this selects the symmetric cipher */
.salg_name = "ctr(aes)" /* this is the cipher name */
};
ctx->sockfd = socket(AF_ALG, SOCK_SEQPACKET, 0);
if (ctx->sockfd == -1) {
fprintf(stderr, "Failed to set up socket!\n");
free(ctx);
return -1;
}
ret = bind(ctx->sockfd, (struct sockaddr *)&sa, sizeof(sa));
if (ret == -1) {
fprintf(stderr, "Failed to bind to socket!\n");
free(ctx);
return ret;
}
*_ctx = ctx;
return 0;
}
void linux_crypto_free(struct linux_crypto **ctx) {
if (!ctx || !*ctx) {
return;
}
if ((*ctx)->cryptofd)
close((*ctx)->cryptofd);
if ((*ctx)->sockfd)
close((*ctx)->sockfd);
free(*ctx);
*ctx = NULL;
}
int linux_crypto_set_key(const uint8_t *key, int keylen, struct linux_crypto *ctx) {
int ret;
if (ctx->cryptofd) {
close(ctx->cryptofd);
ctx->cryptofd = 0;
}
ret = setsockopt(ctx->sockfd, SOL_ALG, ALG_SET_KEY, key, keylen);
if (ret < 0) {
fprintf(stderr, "Errno is %d\n", -errno);
fprintf(stderr, "Failed to set key!\n");
return -1;
}
ret = accept(ctx->sockfd, NULL, 0);
if (ret == -1) {
fprintf(stderr, "Failed to accept socket!\n");
return ret;
}
ctx->cryptofd = ret;
return 0;
}
int linux_crypto_decrypt(uint8_t inbuf[], uint8_t outbuf[], int buflen, uint8_t iv[], struct linux_crypto *ctx) {
return _linux_crypto_process(ctx, inbuf, buflen, outbuf, buflen, 0, iv, 0);
}
int linux_crypto_encrypt(uint8_t inbuf[], uint8_t outbuf[], int buflen, uint8_t iv[], struct linux_crypto *ctx) {
return _linux_crypto_process(ctx, inbuf, buflen, outbuf, buflen, 1, iv, 0);
}
#endif
|