1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
dnl
dnl
dnl @author: Michele Martone
dnl
/* @cond INNERDOC */
/*!
@file
@brief
Former performance info gathering code; now obsoleted and used as test.
*/
dnl
include(`rsb_misc.m4')dnl
dnl
RSB_M4_HEADER_MESSAGE()dnl
dnl
ifdef(`ONLY_WANT_HEADERS',`
#ifndef RSB_BENCH_H_INCLUDED
#define RSB_BENCH_H_INCLUDED
')
dnl
include(`do_unroll.m4')dnl
include(`rsb_krnl_vb_macros.m4')dnl
include(`rsb_krnl_macros.m4')dnl
dnl
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
dnl
#include "rsb_internals.h"
dnl
#ifdef RSB_HAVE_CBLAS_H
#include <cblas.h>
#endif /* RSB_HAVE_CBLAS_H */
#ifdef RSB_HAVE_CLAPACK_H
#include <clapack.h>
#endif /* RSB_HAVE_CLAPACK_H */
#include <math.h>
dnl
dnl
dnl
dnl RSB_M4_HYPERBOLIC_FITTING_FUNCTION_ARGS()
dnl ---------------------------------
dnl
define(`RSB_M4_HYPERBOLIC_FITTING_FUNCTION_ARGS',`dnl
dnl
`(double x[], double y[], size_t nb_loop, double * a, double * b, double *c, double c_s)'dnl
dnl
')dnl
dnl
dnl
dnl RSB_M4_HYPERBOLIC_FITTING_FUNCTION_IDENTIFIER()
dnl ---------------------------------
dnl
define(`RSB_M4_HYPERBOLIC_FITTING_FUNCTION_IDENTIFIER',`dnl
dnl
`rsb__fit_hyp'dnl
dnl
')dnl
dnl
dnl
dnl
dnl RSB_M4_HYPERBOLIC_FITTING_FUNCTION()
dnl ---------------------------------
dnl
define(`RSB_M4_HYPERBOLIC_FITTING_FUNCTION',`dnl
dnl
rsb_err_t RSB_M4_HYPERBOLIC_FITTING_FUNCTION_IDENTIFIER()`'dnl
RSB_M4_HYPERBOLIC_FITTING_FUNCTION_ARGS()`'dnl
ifdef(`ONLY_WANT_HEADERS',`;
',`
{
#if !(RSB_HAVE_CLAPACK && RSB_HAVE_CBLAS)
return RSB_ERR_UNSUPPORTED_OPERATION;
#else
/**
* \ingroup gr_bench
* Note :
*
* This function will compute a performance predictor based on
* nonzero per row ratio, by fitting the two input x (non zeros per row)
* and y (megaflops) vectors (both with n = RSB_FITTING_SAMPLES points) to
* the following formula :
*
* `megaflops (nnz_per_row) a + b / ( c + nnz_per_row )'
*
* The c_s and nb_loop arguments will be documented some day.
*
* This model is discussed in the following article :
@article{ButtEijkLang:spmvp,
title = {Performance Optimization and Modeling of Blocked Sparse Kernels},
author = {Buttari, Alfredo and Eijkhout, Victor and Langou, Julien and Filippone, Salvatore},
pages = {467--484},
year = 2007,
journal = {IJHPCA},
volume = 21,
url = {\url{{http://www.tacc.utexas.edu/~eijkhout/Articles/2007-buttari-spmvp.pdf}}}
}
*
*/
rsb_int nparms=3;
rsb_int n = RSB_FITTING_SAMPLES;
/* Fortran arrays */
#define RSB_FORTRAN_ARRAY(AI,ROWS,COLS) AI[(ROWS)*(COLS)]
rsb_int nj = 3;
rsb_int i,j;
rsb_err_t errval = RSB_ERR_NO_ERROR;
double RSB_FORTRAN_ARRAY(G ,n,3);
double RSB_FORTRAN_ARRAY(G1,n,3);
double RSB_FORTRAN_ARRAY(GG,3,3);
double RSB_FORTRAN_ARRAY(z ,n,1);
double RSB_FORTRAN_ARRAY(z0,n,1);
double RSB_FORTRAN_ARRAY(dy,n,1);
double RSB_FORTRAN_ARRAY(ddy,3,1);
double RSB_FORTRAN_ARRAY(xj ,nj,1);
double RSB_FORTRAN_ARRAY(yj ,nj,1);
double RSB_FORTRAN_ARRAY(zj ,nj,1);
double xcpy[n];
double a_t,b_t,sum1,sum2,sum3,sum4,error,tmp_a,tmp_b,tmp_c, min_err,max,min,avg,intl;
int /*i,*/info,ipivot[3],/*nj,j,*/k,cnt;
rsb__memcpy(xcpy,x,sizeof(xcpy)); /* not a bit more .. and please note that sizeof(x)=sizeof(double*) != sizeof(x[n])*/
RSB_INFO("starting analysis...\n");
RSB_STDOUT("\n");
RSB_STDOUT("performance data:\n");
for(i=0;i<n;++i)
{
RSB_STDOUT("%lg %lg\n",xcpy[i],y[i]);
}
sum1=0;
sum2=0;
sum3=0;
sum4=0;
*a=y[n-1];
rsb__memcpy(xj,x,sizeof(xj)); /* not a bit more */
rsb__memcpy(yj,y,sizeof(yj)); /* not a bit more */
for(i=0;i<nj;++i)
{
zj[i]=yj[i]-*a;
zj[i]=1/zj[i];
}
for(i=0;i<nj;++i)
{
sum1=sum1 + xj[i]*zj[i];
sum2=sum2 + xj[i];
sum3=sum3 + zj[i];
sum4=sum4 + xj[i]*xj[i];
}
a_t= (sum3*sum4-sum2*sum1)/(nj*sum4-sum2*sum2);
b_t=(nj*sum1 - sum2*sum3) / (nj*sum4 - sum2*sum2);
*b=1/b_t;
*c=a_t* *b;
for(i=0;i<n;++i)
z0[i]= *a +*b/(x[i]+*c);
error = 0;
for(j=0;j<n;++j)
error = error + (fabs( z0[j] - y[j] ) / y[j] );
error = error / n * 100;
min_err=error;
tmp_a=*a;
tmp_b=*b;
tmp_c=*c;
for(i=0;i<nb_loop;++i)
{
for(j=0;j<n;++j)
dy[j] = z0[j]-y[j];
for(j=0;j<n;++j)
{
G[j+0*n]=1;
G[j+1*n]=1/(x[j]+tmp_c);
G[j+2*n]=-tmp_b/( (x[j]+tmp_c)*(x[j]+tmp_c) );
G1[j+0*n]= G[j+0*n];
G1[j+1*n]= G[j+1*n];
G1[j+2*n]= G[j+2*n];
}
#if
cblas_dgemm(CblasColMajor,CblasTrans,CblasNoTrans,3,3,n,1.0,G,n,G1,n,0.0,GG,3);
errval = clapack_dgetrf(CblasColMajor,3,3,GG,3,ipivot);
if(RSB_SOME_ERROR(errval))
RSB_PERR_GOTO(err,RSB_ERRM_ES);
cblas_dgemv(CblasColMajor,CblasTrans,n,3,1.0,G,n,dy,1,0.0,ddy,1);
errval = clapack_dgetrs(CblasColMajor,CblasNoTrans,3,1,GG,3,ipivot,ddy,3);
if(RSB_SOME_ERROR(errval))
RSB_PERR_GOTO(err,RSB_ERRM_ES);
#else /* (RSB_HAVE_CLAPACK && RSB_HAVE_CBLAS) */
#endif /* (RSB_HAVE_CLAPACK && RSB_HAVE_CBLAS) */
tmp_a = tmp_a-ddy[1-1];
tmp_b = tmp_b-ddy[2-1];
tmp_c = tmp_c-ddy[3-1];
for(j=0;j<n;++j)
z0[j]= tmp_a +tmp_b/(x[j]+tmp_c);
error = 0;
for(j=0;j<n;++j)
error = error + (fabs( z0[j] - y[j] ) / y[j] );
error = error / n * 100;
if(error < min_err)
{
*a=tmp_a;
*b=tmp_b;
*c=tmp_c;
}
}
if((*c< 0) && (*c < c_s))
{
*c=10000;
*b=10000;
avg=0;
max=y[0];
min=y[0];
for(i=0;i<n;++i)
{
if (y[i] > max) max=y[i];
if (y[i] < min) min=y[i];
avg=avg+y[i];
}
avg=avg/(double)(n);
*a=avg;
intl=max-min;
avg=0;
cnt=0;
for(/*i=0*/;i<n;++i)
//for(i=0;i<n;++i)
{
if (fabs(y[i]-avg) < (0.3*intl))
{
avg = avg + y[i];
cnt=cnt+1;
}
}
if(cnt > 0) *a=avg/(double)cnt;
}
else
if (*b >= 0)
{
*c=10000;
*b=10000;
avg=0;
max=y[0];
min=y[0];
for(i=0;i<n;++i)
{
if (y[i] > max) max=y[i];
if (y[i] < min) min=y[i];
avg=avg+y[i];
}
avg=avg/(double)n;
intl=max-min;
avg=0;
cnt=0;
//for(i=0;i<n;++i)
for(/*i=0*/;i<n;++i)
{
if (fabs(y[i]-avg) < (0.3*intl))
{
avg = avg + y[i];
cnt=cnt+1;
}
}
if(cnt > 0) *a=avg/ (double) cnt;
}
RSB_STDOUT("\n");
RSB_STDOUT("alpha:%lg beta:%lg gamma:%lg\n",*a,*b,*c);
RSB_STDOUT("\nfitting:\n");
for(i=0;i<n;++i)
{
RSB_STDOUT("%lg %lg\n", xcpy[i], *a+*b/(xcpy[i]+*c));
}
return RSB_ERR_NO_ERROR;
err:
RSB_ERROR(RSB_ERRM_ES);
RSB_DO_ERR_RETURN(errval)
#endif /* RSB_HAVE_CLAPACK && RSB_HAVE_CBLAS */
}
')dnl
')dnl
dnl
dnl
dnl
dnl
dnl RSB_M4_REFERENCEBENCHMARK_FUNCTION_ARGS()
dnl ------------------------------------------------------------------
dnl
define(`RSB_M4_REFERENCEBENCHMARK_FUNCTION_ARGS',`dnl
dnl
`(void)'dnl
dnl
')dnl
dnl
dnl
dnl
dnl RSB_M4_REFERENCEBENCHMARK_FUNCTION_IDENTIFIER()
dnl --------------------------------------------
dnl
define(`RSB_M4_REFERENCEBENCHMARK_FUNCTION_IDENTIFIER',`dnl
dnl
`rsb__do_referencebenchmark'dnl
dnl
dnl
')dnl
dnl
dnl
dnl
dnl RSB_M4_REFERENCEBENCHMARK_FUNCTION_NAME()
dnl --------------------------------------
dnl
define(`RSB_M4_REFERENCEBENCHMARK_FUNCTION_NAME',`dnl
dnl
rsb_err_t RSB_M4_REFERENCEBENCHMARK_FUNCTION_IDENTIFIER`'dnl
dnl
dnl
')dnl
dnl
dnl
dnl
dnl RSB_M4_REFERENCEBENCHMARK_FUNCTION()
dnl ---------------------------------
dnl
define(`RSB_M4_REFERENCEBENCHMARK_FUNCTION',`dnl
dnl
RSB_M4_REFERENCEBENCHMARK_FUNCTION_NAME`'dnl
RSB_M4_REFERENCEBENCHMARK_FUNCTION_ARGS`'dnl
ifdef(`ONLY_WANT_HEADERS',`;
',`
{
/*!
* \ingroup gr_bench
* Benchmark/test all supported matrix operations over all supported types.
*
* \return \rsb_errval_inp_param_msg
*/
struct rsb_global_reference_performance_info_t grpi;
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_blk_idx_t ri,ci; /* row index, columns index */
rsb_coo_idx_t order=20000;
rsb_coo_idx_t rows=order,cols=order; /* FIXME : TEMPORARY */
rsb_blk_idx_t rua[] = RSB_ROWS_UNROLL_ARRAY;
rsb_blk_idx_t cua[] = RSB_COLUMNS_UNROLL_ARRAY;
double tot_secs=0.0,pred_secs=1.0;
rsb_trans_t transA = RSB_DEFAULT_TRANSPOSITION;
size_t kernels_n = RSB_ROWS_UNROLL_ARRAY_LENGTH*RSB_COLUMNS_UNROLL_ARRAY_LENGTH*RSB_IMPLEMENTED_MOPS*RSB_IMPLEMENTED_TYPES;
rsb_int ti=0; /* type index */
int fbw,bwi;
const rsb_time_t mrbt = rsb__getenv_real_t("RSB_BENCHMARK_MIN_SECONDS", RSB_BENCHMARK_MIN_SECONDS);
RSB_BZERO_P(&grpi);
/* if((errval = rsb_lib_init(RSB_NULL_INIT_OPTIONS))) RSB_PERR_GOTO(err,RSB_ERRM_ES); we skip this to enable calling this from within our library */
if(RSB_FITTING_SAMPLES<2)
{
fbw=(RSB_FIRST_FITTING_SAMPLE_BW_MAX + RSB_FIRST_FITTING_SAMPLE_BW_MIN)/2;
bwi=fbw;
}
else
{
fbw = RSB_FIRST_FITTING_SAMPLE_BW_MIN;
bwi=(RSB_FIRST_FITTING_SAMPLE_BW_MAX - RSB_FIRST_FITTING_SAMPLE_BW_MIN)/(RSB_FITTING_SAMPLES-1);
}
tot_secs = -rsb_time();
pred_secs *= RSB_ROWS_UNROLL_ARRAY_LENGTH * RSB_COLUMNS_UNROLL_ARRAY_LENGTH * RSB_FITTING_SAMPLES * RSB_IMPLEMENTED_META_MOPS * RSB_IMPLEMENTED_TYPES * mrbt;
RSB_STDERR("#reference benchmarking of %zd kernels (no transposed, no symmetric, and so on) should take at least %lg seconds..\n",kernels_n,pred_secs);
foreach(`mtype',RSB_M4_MATRIX_TYPES,`dnl
/* mtype type benchmarking */
/* RSB_INFO("#mtype type benchmarking\n");*/
for(ri=0;ri<RSB_ROWS_UNROLL_ARRAY_LENGTH;++ri)
{
for(ci=0;ci<RSB_COLUMNS_UNROLL_ARRAY_LENGTH;++ci)
{
rsb_blk_idx_t br = rua[ri];
rsb_blk_idx_t bc = cua[ci];
rsb_coo_idx_t bw,mbw=(cols/bc);
rsb_int si=0; /* sample index */
mbw=(cols-bc)/bc; /* tune here to fill further our matrix */
/* FIXME : there is the danger of empty samples! */
for(bw=fbw;bw<=mbw && si< RSB_FITTING_SAMPLES ;bw+=bwi) /* this parameter should be tunable, too */
{
//RSB_INFO("bw = %d\n",bw);
rsb_int moi=0; /* matrix operation index */
double time,*timep=&time;
struct rsb_mtx_t * mtxAp =
rsb__generate_blocked_banded(br,bc,rows,cols,bw,timep,RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype),RSB_BOOL_TRUE ); /* FIXME : generating triangular factors always ! */
if(!mtxAp)
{
RSB_STDERR(RSB_ERRM_IE);
{errval = RSB_ERR_GENERIC_ERROR; RSB_PERR_GOTO(err,RSB_ERRM_ES); }
}
dnl struct rsb_options_t * o = mtxAp->options;
foreach(`mop',RSB_M4_MATRIX_META_OPS,`dnl
{
/* RSB_INFO("#mtype type, ");*/
/* RSB_INFO("mop operation benchmarking\n");*/
/* mop operation benchmarking */
ifelse(RSB_M4_IS_SPXX_TWO_VECTORS_OPERATING_KERNEL_MOP(mop),1,`dnl
mtype *out=NULL,*rhs=NULL;
')dnl
ifelse(RSB_M4_IS_SPXX_OP_SCALING_KERNEL_MOP(mop),1,`dnl
double alpha=1.0;/* FIXME */
double * alphap = α
')dnl
ifelse(RSB_M4_IS_SPXX_SCALING_KERNEL_MOP(mop),1,`dnl
double beta =1.0;/* FIXME */
double * betap = &beta ;
')dnl
ifelse(RSB_M4_IS_ACC_WRITING_KERNEL_MOP(mop),`1',`dnl
mtype * row_sums;
')dnl
ifelse(RSB_M4_IS_ACC_WRITING_KERNEL_MOP(mop),`1',`dnl
row_sums = rsb__malloc(mtxAp->el_size*(rows+br));
if(!row_sums) {RSB_ERROR(RSB_ERRM_ES);errval = RSB_ERR_ENOMEM;goto erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop;}
if(rsb__fill_with_ones(row_sums,mtxAp->typecode,cols,1)) {RSB_ERROR(RSB_ERRM_ES);errval = RSB_ERR_ENOMEM;goto erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop;}
')dnl
ifelse(mop,`scale',`dnl
mtype * scale_factors = rsb__malloc(mtxAp->el_size*(rows+br));
if(!scale_factors) {RSB_ERROR(RSB_ERRM_ES);errval = RSB_ERR_ENOMEM;goto erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop;}
if(rsb__fill_with_ones(scale_factors,mtxAp->typecode,rows,1)) {RSB_ERROR(RSB_ERRM_ES);errval = RSB_ERR_ENOMEM;goto erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop;}
')dnl
ifelse(RSB_M4_IS_ACC_WRITING_KERNEL_MOP(mop),`1',`dnl
')dnl
ifelse(RSB_M4_IS_SPXX_TWO_VECTORS_OPERATING_KERNEL_MOP(mop),1,`dnl
rsb_coo_idx_t nrhs=4;
rsb_coo_idx_t bstride = cols+bc;
rsb_coo_idx_t cstride = rows+br;
ifelse(RSB_M4_IS_STRIDED_KERNEL_MOP(mop),1,`dnl
rsb_coo_idx_t incx=1,incy=1;
incx=1,incy=1; /* this is just a pacifier for "unused variable"-like warnings */
',`dnl
dnl rsb_coo_idx_t incx=1,incy=1;
')dnl
rhs = rsb__malloc(mtxAp->el_size*(bstride)*nrhs);
out = rsb__malloc(mtxAp->el_size*(cstride)*nrhs);
if(!out || rsb__fill_with_ones(out,mtxAp->typecode,cstride*nrhs,1)){RSB_ERROR(RSB_ERRM_ES);errval = RSB_ERR_ENOMEM;goto erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop;}
if(!rhs || rsb__fill_with_ones(rhs,mtxAp->typecode,bstride*nrhs,1)){RSB_ERROR(RSB_ERRM_ES);errval = RSB_ERR_ENOMEM;goto erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop;}
')dnl
ifelse(mop,`negation',`dnl
int please_fix_RSB_M4_ARGS_TO_ACTUAL_ARGS=-1;/* here to fix negation */
')dnl
grpi.gpi[ti].pipmo[moi].blocks_per_row[si]=bw*bc; /* FIXME : TEMPORARY !! */
/* we benchmark our mtype library implementation for operation mop */
grpi.gpi[ti].pipmo[moi].pipfs[si].seconds[ri][ci] = mrbt; /* min seconds */
grpi.gpi[ti].pipmo[moi].pipfs[si].m_flops[ri][ci] = (double)RSB_BENCHMARK_MIN_RUNS; /* min runs */
errval = dnl
ifelse(RSB_M4_MATRIX_OP_IS_META_OP(mop),`1',dnl
`0;/* meta-op : we already measured matrix creation time */
grpi.gpi[ti].pipmo[moi].pipfs[si].seconds[ri][ci]=time;
grpi.gpi[ti].pipmo[moi].pipfs[si].m_flops[ri][ci]=((double)rsb__do_get_matrix_nnz(mtxAp))/1000000;
/* FIXME : this is experimental and unfinished code */
',`
RSB_M4_DIRECT_KERNEL_DISPATCH_BENCHMARK_FUNCTION_IDENTIFIER(mop,mtype)(dnl
&(grpi.gpi[ti].pipmo[moi].pipfs[si].seconds[ri][ci]),dnl
&(grpi.gpi[ti].pipmo[moi].pipfs[si].m_flops[ri][ci]),dnl
RSB_M4_DIRECT_KERNEL_DISPATCH_TIMING_FUNCTION_ACTUAL_ARGS(mop,mtype));')
grpi.gpi[ti].pipmo[moi].pipfs[si].fillin[ri][ci] = rsb__do_get_matrix_fillin(mtxAp);
grpi.gpi[ti].pipmo[moi].pipfs[si].rows = rows;
grpi.gpi[ti].pipmo[moi].pipfs[si].cols = cols;
grpi.gpi[ti].pipmo[moi].pipfs[si].nnz = rsb__do_get_matrix_nnz(mtxAp) ;
grpi.gpi[ti].pipmo[moi].pipfs[si].flags= mtxAp->flags ;
grpi.gpi[ti].pipmo[moi].pipfs[si].storage= mtxAp->matrix_storage ;
grpi.gpi[ti].pipmo[moi].pipfs[si].typecode= mtxAp->typecode ;
grpi.gpi[ti].pipmo[moi].pipfs[si].element_count= mtxAp->element_count;
grpi.gpi[ti].pipmo[moi].pipfs[si].e_mflops[ri][ci] =
grpi.gpi[ti].pipmo[moi].pipfs[si].m_flops[ri][ci] /
grpi.gpi[ti].pipmo[moi].pipfs[si].fillin[ri][ci];
if(RSB_SOME_ERROR(errval)){RSB_ERROR(RSB_ERRM_ES);goto erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop;}
++moi;
erri_`'RSB_M4_CHOPSPACES(mtype)`'`_'`'mop:
if(RSB_SOME_ERROR(errval))
RSB_PERR_GOTO(err,RSB_ERRM_ES);
RSB_NULL_STATEMENT_FOR_COMPILER_HAPPINESS
ifelse(RSB_M4_IS_ACC_WRITING_KERNEL_MOP(mop),`1',`dnl
RSB_CONDITIONAL_FREE(row_sums);
')dnl
ifelse(RSB_M4_IS_SPXX_TWO_VECTORS_OPERATING_KERNEL_MOP(mop),1,`dnl
RSB_CONDITIONAL_FREE(out);
RSB_CONDITIONAL_FREE(rhs);
')dnl
ifelse(mop,`scale',`dnl
RSB_CONDITIONAL_FREE(scale_factors);
')dnl
}
')dnl
RSB_MTX_FREE(mtxAp);
++si;
}
}
}
{
rsb_int moi;
rsb_char_t * mops[] = RSB_M4_MATRIX_META_OPS_ARRAY;
rsb_char_t * types[] = RSB_M4_MATRIX_TYPES_ARRAY;
rsb_char_t s[RSB_M4_BUFLEN];
rsb__print_mop_reference_performance_info_header();
for(moi=0;moi<RSB_IMPLEMENTED_META_MOPS;++moi)
{
/* rsb_int si;*/
/* informational printout */
sprintf(s,"%s\t%s\t",types[ti], mops[moi]);
rsb__print_mop_reference_performance_info(&(grpi.gpi[ti].pipmo[moi]),s);
/* for(si=0;si<RSB_FITTING_SAMPLES;++si)*/
/* rsb__dump_performance_info(&(grpi.gpi[ti].pipmo[moi].pipfs[si]), NULL);*/
}
}
++ti;
')dnl
tot_secs += rsb_time();
RSB_STDERR("#reference benchmarking took %lg seconds (predicted %lg :)....\n",tot_secs,pred_secs);
grpi.initialized=1; /* FIXME : only partially */
//rsb__dump_global_reference_performance_info(&grpi);
#if RSB_WANT_PERFORMANCE_FILE
rsb__save_global_reference_performance_info(&grpi);
#endif /* RSB_WANT_PERFORMANCE_FILE */
ti=0; /* type index */
for(ti=0;ti<RSB_IMPLEMENTED_TYPES ;++ti)
for(ri=0;ri<RSB_ROWS_UNROLL_ARRAY_LENGTH;++ri)
{
for(ci=0;ci<RSB_COLUMNS_UNROLL_ARRAY_LENGTH;++ci)
{
rsb_blk_idx_t bc = cua[ci];
rsb_int moi=0; /* matrix operation index */
for(moi=0;moi<RSB_IMPLEMENTED_META_MOPS ;++moi)
{
rsb_int si=0; /* sample index */
double y[RSB_FITTING_SAMPLES];
double * x = grpi.gpi[ti].pipmo[moi].blocks_per_row;
for(si=0;si< RSB_FITTING_SAMPLES ;++si)
{
/* we tune our mtype library implementation for operation mop */
y[si] =
grpi.gpi[ti].pipmo[moi].pipfs[si].m_flops[ri][ci]/
grpi.gpi[ti].pipmo[moi].pipfs[si].seconds[ri][ci];
}
/*
* FIXME : make this fitting analysis offline respect our benchmark!
*/
errval = RSB_M4_HYPERBOLIC_FITTING_FUNCTION_IDENTIFIER()(
x, y, 3,
&(grpi.gpi[ti].pipmo[moi].alpha[ri][ci]),
&(grpi.gpi[ti].pipmo[moi].beta [ri][ci]),
&(grpi.gpi[ti].pipmo[moi].gamma[ri][ci]), (double)bc
/* FIXME : is this right ?*/
);
if(RSB_SOME_ERROR(errval))
{
if(errval==RSB_ERR_UNSUPPORTED_OPERATION)
; /* not a problem: this model is obsolete */
/* RSB_ERROR(RSB_ERRM_UNSUPPORTED_OPERATION); */
else
RSB_PERR_GOTO(err,RSB_ERRM_ES);
}
}
}
}
errval = rsb_lib_exit(RSB_NULL_EXIT_OPTIONS);
if( RSB_SOME_ERROR(errval) )
{
errval = RSB_ERR_INTERNAL_ERROR;
RSB_PERR_GOTO(err,RSB_ERRM_ES);
}
err:
RSB_DO_ERR_RETURN(errval)
}
')dnl
')dnl
dnl
dnl
dnl
dnl
dnl
RSB_M4_HYPERBOLIC_FITTING_FUNCTION()
RSB_M4_REFERENCEBENCHMARK_FUNCTION()
dnl
dnl
dnl
dnl
dnl
dnl
dnl
#ifdef __cplusplus
}
#endif /* __cplusplus */
dnl
dnl
ifdef(`ONLY_WANT_HEADERS',`
#endif /* RSB_BENCH_H_INCLUDED */
')
/* @endcond */
dnl
|