1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*
Copyright (C) 2008-2021 Michele Martone
This file is part of librsb.
librsb is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
librsb is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with librsb; see the file COPYING.
If not, see <http://www.gnu.org/licenses/>.
*/
/*!
\ingroup rsb_doc_examples
@file
@author Michele Martone
@brief C triangular solve example program.
Uses #rsb_spsv(),#rsb_tune_spsm().
Based on <rsb.h>.
\include hello.c
*/
#include <rsb.h> /* librsb header to include */
#include <stdio.h> /* printf() */
int main(const int argc, char * const argv[])
{
/*!
A Hello-RSB program.
This program shows how to use the rsb.h interface correctly to:
- initialize the library using #rsb_lib_init()
- allocate (build) a single sparse matrix in the RSB format
using #rsb_mtx_alloc_from_coo_const(), with implicit diagonal
- print information obtained via #rsb_mtx_get_info_str()
- multiply the triangular matrix using #rsb_spmv()
- autotune the matrix for rsb_spsv with #rsb_tune_spsm()
- solve the triangular system using #rsb_spsv()
- deallocate the matrix using #rsb_mtx_free()
- finalize the library using #rsb_lib_exit()
In this example, we use #RSB_DEFAULT_TYPE as matrix type.
This type depends on what was configured at library build time.
* */
const int bs = RSB_DEFAULT_BLOCKING;
const int brA = bs, bcA = bs;
const RSB_DEFAULT_TYPE one = 1;
const rsb_type_t typecode = RSB_NUMERICAL_TYPE_DEFAULT;
const rsb_nnz_idx_t nnzA = 7; /* matrix nonzeroes count */
const rsb_coo_idx_t nrA = 6; /* matrix rows count */
const rsb_coo_idx_t ncA = 6; /* matrix columns count */
/* nonzero row indices coordinates: */
const rsb_coo_idx_t IA[] = {1,2,3,4,5,6,1};
/* nonzero column indices coordinates: */
const rsb_coo_idx_t JA[] = {1,2,3,4,5,6,6};
const RSB_DEFAULT_TYPE VA[] = {1,1,1,1,1,1,1};/*values of nonzeroes*/
RSB_DEFAULT_TYPE X[] = { 0,0,0,0,0,0 }; /* X vector's array */
const RSB_DEFAULT_TYPE B[] = { 1,1,1,1,1,1 }; /* B */
struct rsb_mtx_t *mtxAp = NULL; /* matrix structure pointer */
char ib[200];
int i;
rsb_err_t errval = RSB_ERR_NO_ERROR;
const rsb_int_t wvat = 1; /* want verbose autotuning; see
documentation of RSB_IO_WANT_VERBOSE_TUNING */
printf("Hello, RSB!\n");
printf("Initializing the library...\n");
if((errval = rsb_lib_init(RSB_NULL_INIT_OPTIONS)) !=
RSB_ERR_NO_ERROR)
{
printf("Error initializing the library!\n");
goto err;
}
printf("Correctly initialized the library.\n");
errval = rsb_lib_set_opt(RSB_IO_WANT_VERBOSE_TUNING, &wvat );
if( (errval) != RSB_ERR_NO_ERROR )
{
printf("Error setting option!\n");
goto err;
}
mtxAp = rsb_mtx_alloc_from_coo_const(
VA,IA,JA,nnzA,typecode,nrA,ncA,brA,bcA,
RSB_FLAG_DEFAULT_RSB_MATRIX_FLAGS /* force rsb */
| RSB_FLAG_DUPLICATES_SUM/* sum dups */
| RSB_FLAG_UNIT_DIAG_IMPLICIT/* ask diagonal implicit */
| RSB_FLAG_TRIANGULAR /* need triangle for spsv */
| RSB_FLAG_FORTRAN_INDICES_INTERFACE /* treat indices as 1-based */
, &errval);
if((!mtxAp) || (errval != RSB_ERR_NO_ERROR))
{
printf("Error while allocating the matrix!\n");
goto err;
}
printf("Correctly allocated a matrix with %ld nonzeroes.\n",
(long int)nnzA);
printf("Summary information of the matrix:\n");
/* print out the matrix summary information */
rsb_mtx_get_info_str(mtxAp,"RSB_MIF_MATRIX_INFO__TO__CHAR_P",
ib,sizeof(ib));
printf("%s",ib);
printf("\nMatrix printout:\n");
rsb_file_mtx_save(mtxAp, NULL);
if((errval =
rsb_spmv(RSB_TRANSPOSITION_N,&one,mtxAp,B,1,&one,X,1))
!= RSB_ERR_NO_ERROR )
{
printf("Error performing a multiplication!\n");
goto err;
}
printf("\nWe have a unitary vector:\n");
rsb_file_vec_save(NULL, typecode, B, nrA);
printf("\nMultiplying matrix by unitary vector we get:\n");
rsb_file_vec_save(NULL, typecode, X, nrA);
errval = rsb_tune_spsm(&mtxAp, NULL, NULL, 0, 0, RSB_TRANSPOSITION_N,
&one, NULL, 1, RSB_FLAG_WANT_COLUMN_MAJOR_ORDER, NULL, nrA,
NULL, NULL, nrA);
if( (errval) != RSB_ERR_NO_ERROR )
{
printf("Error performing autotuning!\n");
goto err;
}
if((errval = rsb_spsv(RSB_TRANSPOSITION_N,&one,mtxAp,X,1,X,1))
!= RSB_ERR_NO_ERROR )
{
printf("Error performing triangular solve!\n");
goto err;
}
printf("\nBacksolving we should get a unitary vector:\n");
rsb_file_vec_save(NULL, typecode, X, nrA);
for(i=0;i<nrA;++i)
if(X[i]!=one)
{
printf("Warning! Result vector not unitary!:\n");
errval = RSB_ERR_INTERNAL_ERROR;
goto err;
}
printf("All done.\n");
rsb_mtx_free(mtxAp);
printf("Correctly freed the matrix.\n");
if((errval = rsb_lib_exit(RSB_NULL_EXIT_OPTIONS))
!= RSB_ERR_NO_ERROR)
{
printf("Error finalizing the library!\n");
goto err;
}
printf("Correctly finalized the library.\n");
printf("Program terminating with no error.\n");
return EXIT_SUCCESS;
err:
rsb_perror(NULL,errval);
printf("Program terminating with error.\n");
return EXIT_FAILURE;
}
|