File: rsb_mbw.c

package info (click to toggle)
librsb 1.3.0.2%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,792 kB
  • sloc: ansic: 274,405; f90: 108,468; cpp: 16,934; sh: 6,761; makefile: 1,679; objc: 692; awk: 22; sed: 1
file content (1023 lines) | stat: -rw-r--r-- 26,392 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
/*

Copyright (C) 2008-2021 Michele Martone

This file is part of librsb.

librsb is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

librsb is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public
License along with librsb; see the file COPYING.
If not, see <http://www.gnu.org/licenses/>.

*/
/* @cond INNERDOC  */
/**
 * @file
 * @author Michele Martone
 * @brief Memory bandwidth related (e.g.: read, write, and read-write) microbenchmarks for cache based machines.
 */

#include "rsb_common.h"
#include "rsb.h"
#include <strings.h>	/* RSB_BZERO */
#include <stdint.h> /* uintptr_t */

#define RSB__PC_STRIDE 1 /* stride for pointer chasing */

/* require sizeof(w_t) >= sizeof(void*) */
typedef uintptr_t w_t;

size_t rsb__entropy;		/**< private checksum-only variable, necessary to avoid compiler optimization of memory scan operations */

RSB_INTERNALS_COMMON_HEAD_DECLS

static const char * rsb__mbw_s2s(rsb_flags_t btype)
{
	/**
		\ingroup gr_internals
	 	\return a pointer to a const string descriptive of this particular memory measurement
	 */
	switch(btype)
	{
		case RSB_MB_INVALID:	
			return "INVALID";
			break;
		case RSB_MB_READ	:	
			return "READ";
			break;
		case RSB_MB_WRITE	:	
			return "WRITE";
			break;
		case RSB_MB_RW		:
			return "RW";
			break;
		case RSB_MB_BZERO		:
			return "BZERO";
			break;
		case RSB_MB_ZERO		:
			return "ZERO";
			break;
		case RSB_MB_MEMCPY		:
			return "MEMCPY";
			break;
		case RSB_MB_MEMCPY2		:
			return "MEMCPY2";
			break;
		case RSB_MB_MEMSET		:
			return "MEMSET";
			break;
		case RSB_MB_LINEAR_CHASE	:
			return "LINEAR_CHASE";
			break;
		case RSB_MB_MORTON_CHASE	:
			return "MORTON_CHASE";
			break;
		default:
		/* error */
		return "";
	}
}

typedef int cb_t;
typedef size_t zb_t ;

static void h2c(cb_t *bip, cb_t *bjp, zb_t bz)
{
	/**
	 * \ingroup gr_internals
	 * morton to coordinate
	 */
        int b;

        *bip=0;
        *bjp=0;
//      RSB_STDERR("-> %ld\n",bz);
	/* this would greatly benefit of bit interleaving (absent on x86) */
        for(b=0;b<8*sizeof(cb_t);++b)
        {
                /* mancano queste due righe */
                *bip|=(bz&(0x1<<(2*b+1)))>>(b+1);
                *bjp|=(bz&(0x1<<(2*b+0)))>>(b+0);
        }
}

#if 0
/* unused function */
static void c2h(cb_t bi, cb_t bj, zb_t * bzp)
{
	/** 
	 * \ingroup gr_internals
	 * coordinate to morton
	 */
        int b;
        *bzp=0;
//      RSB_STDERR("b : %d %d\t",bi,bj);
        for(b=0;b<8*sizeof(cb_t);++b)
        {
                *bzp|=(bi&(0x1<<b))<<(b+1);
                *bzp|=(bj&(0x1<<b))<<(b+0);
        }
//      RSB_STDERR("z : %9ld\n",*bzp);
}
#endif

static int morton_pointer_chasing_pattern_init(w_t *p, size_t dim)
{
	/**
	 * \ingroup gr_internals
	 *
	 * TODO: Document me.
	 * Note: requires dim==4^k for some k. If not, then only half benchmark is performed.
	 * May fix this with a tiling approach.
         */
	const int stride = RSB__PC_STRIDE;
	int words,i;
	int ni=0,oi=0,e=0 /* dim>=2^e */;
	int side=0;
	{int tmp=dim/(stride*2*sizeof(w_t));while(tmp>0){++e;tmp/=2;}e/=2;e*=2;/* e is even */}

	if(e<1)
		return -1;

	words = (1<<e);
	side = (1<<(e/2));
	oi = 0;
	ni = 0;
/*
	RSB_STDERR("morton_pointer_chasing_pattern_init\n");
	RSB_STDERR("%d\n",e);
	RSB_STDERR("should span %d bytes\n",dim);
	RSB_STDERR("%d side\n",side);
	RSB_STDERR("will span %d words \n",words);
	RSB_STDERR("will span %d bytes \n",words*sizeof(w_t));*/
	for(i=0;i<words;++i)
	{
		//int j=0;
		int nx=0,ny=0;
		/* WARNING : we could not have 8 bits per byte */
		h2c( &nx,  &ny,  i+1);
		nx=nx%side;
		ny=ny%side;
		ni=(nx+ny*side)%words;
		//RSB_STDERR("%d %d\n",nx,ny);
		//RSB_STDERR("%d\n",ni);
		//RSB_STDERR("%d %d %d %d\n",nx,ny,i+1,ni);
		*(w_t**)&p[oi*stride]=(w_t*)&p[ni*stride];
		oi=ni;
	}
	return 0;
}

static int pointer_chasing_pattern_init(w_t *p, size_t dim)
{
	/**
	 * \ingroup gr_internals
         * Initializes a memory area to perform a linear pointer chasing.
         */
	int i;
	const int stride = RSB__PC_STRIDE;
	const int words=dim/(stride * sizeof(w_t));

	for(i=1;i<=words;++i)
		*(w_t**)&p[(i-1)*stride]=(w_t*)&p[(i*stride)%words];

/*        for (i = stride; i < range; i += stride) {
                *(char **)&addr[i - stride] = (char*)&addr[i];
        }
        *(char **)&addr[i - stride] = (char*)&addr[0];*/
	return 0;
}

static int rsb__scan_cache(w_t *p, size_t dim, int should, size_t times, w_t *q)
{
	/**
	 * \ingroup gr_internals
	 * Performs a naive memory scan with side effect.
	 *
	 *  The memory scan will operate on a memory area of dim bytes.
	 *  Will touch consecutively memory locations with a stride of 
	 *  sizeof(w_t) bytes.
	 *  Since we hadn't unrolled the following loops, this should be 
	 *  aggressively unrolled in a way to remain memory bound.
	 *
	 *  Please note that if dim is less than L1/L2/L3 cache, you will
	 *  not effectively benchmark your memory subsystem, but only caches.
	 *
	 *  It is advised for p to be aligned in some way for better performance.
	 *
	 * \return RSB_ERR_NO_ERROR on correct operation, an error code (see \ref errors_section) otherwise.
	 *
	 * */
	w_t n = 0;
	int i,t;
	const int words = dim / sizeof(w_t);
	
	RSB_DEBUG_ASSERT(times < INT_MAX);
	if (times > INT_MAX) /* avoid t could overflow if times too large */
		goto err;

	if(should == RSB_MB_MEMCPY2 && !q)
		goto err;

	if(should == RSB_MB_FLUSH)/* we ignore times */
	{
		#pragma omp parallel for schedule(static,1) RSB_NTC
		for(i=0;i<words;++i)
			n += p[i];
	}
	else
	/*
	 * Warning : if the compiler is really, really smart, it
	 * could detect we are zeroing.
	 * That could result in an excessively high value here.
	 * */
		/* Note: xlc -O4 was much smarter than us here (maybe on times!). */
		if(should == RSB_MB_ZERO)
			for(t=0;t<times;++t)
			{
				i=0;
				for(;i+7<words;i+=8)
					p[i+0]=0,p[i+1]=0,
					p[i+2]=0,p[i+3]=0,
					p[i+4]=0,p[i+5]=0,
					p[i+6]=0,p[i+7]=0;
				for(;i<words;i++)
					p[i]=0;
			}
	else
		if(should == RSB_MB_BZERO)
			for(t=0;t<times;++t)
				RSB_BZERO(p,dim);
	/*
		WARNING : memcpy operations involve two buffers or two halves ! 
		so be careful when interpreting these results:
		memory bandwidth is double than transfer speed.
	 */
	else
		if(should == RSB_MB_MEMCPY)
			for(t=0;t<times;++t)
				memcpy(p,((char*)p)+dim/2,dim/2);
	else
		if(should == RSB_MB_MEMCPY2)
			for(t=0;t<times;++t)
				memcpy(p,q,dim);
	else
		/* Note: xlc -O4 was much smarter than us here (maybe on times!). */
		if(should == RSB_MB_WRITE)
			for(t=0;t<times;++t)
			{
				i=0;
				for(;i+7<words;i+=8)
					p[i+0]=i+0,p[i+1]=i+1,
					p[i+2]=i+2,p[i+3]=i+3,
					p[i+4]=i+4,p[i+5]=i+5,
					p[i+6]=i+6,p[i+7]=i+7;
				for(;i<words;i++)
					p[i]=i;
			}
	else
		/* Note: xlc -O4 was much smarter than us here (maybe on times!). */
		if(should == RSB_MB_READ)
			for(t=0;t<times;++t)
			{
				// double loop == loop overhead
				i=0;
				for(;i+7<words;i+=8)
					n+=p[i] +p[i+1] +p[i+2] +p[i+3] +p[i+4] +p[i+5] +p[i+6] +p[i+7];
				for(;i<words;i++)
					n+=p[i];
			}
	else
		if(should == RSB_MB_MORTON_CHASE || should == RSB_MB_LINEAR_CHASE)
			for(t=0;t<times;++t)
				for(i=0;i<words;++i)
					p=*(w_t**)p;	/* pointer chasing */
	else
		if(should == RSB_MB_RW)
			for(t=0;t<times;++t)
				for(i=0;i<words;++i)
					p[i]+=i;
	else
		if(should == RSB_MB_MEMSET)
			for(t=0;t<times;++t)
				memset(p,0x0A0B0C0D,dim);
	else
		goto err;

	// return n+*p;	/* WARNING: easily optimizable! should rather accumulate into a 'pool' of entropy! */
	rsb__entropy += n+*p;
	return RSB_ERR_NO_ERROR;
err:
	return RSB_ERR_GENERIC_ERROR;
}

static int rsb_mbw_area_init_and_cache_flush(size_t sz, w_t *fc, w_t *p, int btype /*, int * entropy*/, size_t times)
{
	/**
	 * \ingroup gr_internals
	 * Will init the memory area for benchmarking and then
	 * flush the cache, assuming that its size is sz.
	 */
	switch(btype)
	{
		case(RSB_MB_LINEAR_CHASE):
			return pointer_chasing_pattern_init(p, sz);
		case(RSB_MB_MORTON_CHASE):
			return morton_pointer_chasing_pattern_init(p, sz);
		default:
			return 0;
	}
	rsb__scan_cache(fc,sz,RSB_MB_FLUSH,times, NULL);	/* flush cache */
}

static rsb_time_t mbw_total_time( struct rsb_mbw_m_t *mbw_m  )
{
	/**
	 * \ingroup gr_internals
	 */
	rsb_time_t t = RSB_REAL_ZERO;
	int i;
	if(!mbw_m)
		return t;
	for(i=0;i<RSB_MB_N;++i)
	{
		t+=mbw_m->mb[i].t;
	}
	return t;
}

static rsb_err_t mbw_test( struct rsb_mbw_m_t *mbw_m  );

static rsb_err_t probe_approx_mbw( struct rsb_mbw_m_t * mbwm, rsb_time_t s )
{
	/**
	 * \ingroup gr_internals
	 * we run this quick test and return a rough estimate
	 * of the number of times the test should be performed
	 * on the given memory area to last circa s seconds.
	 * (assumes all memory tests)
	 * */
	const rsb_time_t min_time=0.1;
	size_t times=0;
	rsb_time_t t=0;/* some compilers (e.g.: pgcc) don't init variables for us :) */
	rsb_err_t errval = RSB_ERR_NO_ERROR;

	if( !mbwm )
		{errval = RSB_ERR_BADARGS;goto err;}
	mbwm->times=1;	/* we set times */
	if(s<min_time)
		{errval = RSB_ERR_BADARGS;goto err;}

	while(t<min_time && mbwm->times<=RSB_MAX_TIMES_T)
	{
		mbwm->times*=2;	/* we set times */
		if((errval=mbw_test(mbwm))) /* we perform benchmarking */
			goto err;
		t=mbw_total_time( mbwm  );
		if(t <= RSB_REAL_ZERO)
			{errval = RSB_ERR_INTERNAL_ERROR;goto err;}
	}
	/* times/s == mbwm.times/t */
	times=(int)(((double)mbwm->times)/t)*s;
	if(times<=0 /*overflow ?*/ /* || times < 100*/)
#ifdef INT_MAX 
	{
		times=INT_MAX;
		return 0;
	}
#else /* INT_MAX  */
		{errval = RSB_ERR_INTERNAL_ERROR;goto err;}
#endif /* INT_MAX  */
	/* finally, we set our estimate 'times' value for s seconds benchmarking */
	mbwm->times=times;
err:
	RSB_DO_ERR_RETURN(errval)
}

static rsb_err_t mbw_test( struct rsb_mbw_m_t *mbw_m  )
{
	/**
	 * \ingroup gr_internals
	 * Run each memory benchmark.
	 * Assume existence of hardware-managed caches.
	 */
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	w_t * p=NULL,*fc=NULL,*q=NULL;
	struct rsb_mbw_m_t m; 
	int i;

	if(!mbw_m)
		return RSB_ERR_BADARGS;

	m=*mbw_m;

	/* if m.times is zero, probe for an appropriate value */
	if(m.times == 0 && (errval=probe_approx_mbw(&m,1.0)))
	{
		RSB_STDERR("uhm. timing problems ?!.\n");
		rsb__do_perror(NULL,errval);
		goto errl;
	}

	/* 
	 * In order for flushing to work effectively; the flush array must be big enough.
	 * Therefore it is advised to set m.hlcs to at least the size of the bigger cache.
	 * */
	p = rsb__aligned_malloc( m.sz , m.sz );
	q = rsb__aligned_malloc( m.sz , m.sz );/* q is auxiliary */
	fc= rsb__aligned_malloc( m.hlcs , m.hlcs );

	if(!p || !fc || !q)
	{
		if(!p || !q) { RSB_STDERR("problems allocating %zd bytes.\n",(size_t)m.sz  ); }
		if(!fc) { RSB_STDERR("problems allocating %zd bytes.\n",(size_t)m.hlcs); }
		errval = RSB_ERR_GENERIC_ERROR;
		goto errl;
	}

	for(i=0;i<RSB_MB_N;++i)
	{
		m.mb[i].btype=i;	/* we set benchmark type */
		rsb_mbw_area_init_and_cache_flush(m.sz, fc, p, i/*, int * entropy*/, m.times);
		m.mb[i].t = - rsb_time();
		rsb__entropy += rsb__scan_cache(p,m.sz,i,m.times,q);	/* we perform measurement */
		m.mb[i].t += rsb_time();
	}

	// about commenting the following : DANGER
	//if(m.entropy)fprintf(stderr,"the following number is printed only for tricking the compiler optimizer, and has no other use: %d\n",entropy); /* this is essential */
	if(mbw_m)
		*mbw_m=m;
errl:
	RSB_CONDITIONAL_FREE(p);
	RSB_CONDITIONAL_FREE(fc);
	RSB_CONDITIONAL_FREE(q);
	RSB_DO_ERR_RETURN(errval)
}

static rsb_err_t mbw_ratio_printf(struct rsb_mbw_m_t *h, struct rsb_mbw_m_t *l)
{
	/**
	 * \ingroup gr_internals
	 * Print the ratio in performance of two measurements.
	 */
	const double M = 1.0;
	int i;

	RSB_DEBUG_ASSERT(!(!h||!l));

	for(i=0;i<RSB_MB_N;++i)
		RSB_INFO("#%-32s ratio  %lg \n"  ,
			rsb__mbw_s2s(i),
			((((double)h->times)*h->sz)/(h->mb[i].t*M))/
			((((double)l->times)*l->sz)/(l->mb[i].t*M))
			);
	return RSB_ERR_NO_ERROR;
}

static rsb_err_t mbw_printf(struct rsb_mbw_es_t *esp, struct rsb_mbw_m_t *m, int level)
{
#define RSB_MBW_M_T(MP,I) ((((double)MP->times)*MP->sz)/(MP->mb[i].t*M))
	/**
	 * \ingroup gr_internals
		Prints out memory benchmarks results. 
	 * TODO: if esp is here, it does not print anymore :-)
	*/
	int i;
	const double M=1000000.0;

	if(!m)
		return RSB_ERR_BADARGS;

	if(!esp)
		RSB_INFO("#%-32s\tsize\tlevel\tbw(MBps)\n","size");

	for(i=0;i<RSB_MB_N;++i)
	{
		if(!esp)
			RSB_INFO("%-32s\t%zd\t%zd\t%lg\n",rsb__mbw_s2s(m->mb[i].btype),(rsb_printf_int_t)m->sz,(rsb_printf_int_t)level,RSB_MBW_M_T(m,i));

		if(esp)
			esp[i].bw=RSB_MBW_M_T(m,i),
			esp[i].sz=m->sz,
			esp[i].lvl=level,
			esp[i].mbt=m->mb[i].btype;
	}

	return RSB_ERR_NO_ERROR;
#undef RSB_MBW_M_T
}

rsb_err_t rsb__mem_hier_timings(struct rsb_mbw_cm_t * cm)
{
	/**
	 * \ingroup gr_internals
	 * Measures memory bandwidth in scanning increasingly sized arrays.
	 * These are sized and aligned like initial memory hierarchies (caches) and then more.
	 */
	int cln=0,cl;
	struct rsb_mbw_m_t mbw_m,*mbw_ms=NULL;
	long cs = 0;
	const long extra_levels = RSB_MEMSCAN_EXTRA_LEVELS;

	if( !cm )
		return RSB_ERR_BADARGS;

	cln = rsb__get_cache_levels_num();

	if(cln<1)
	{
		RSB_INFO("No information about caches, sorry\n");
		return -1;
	}

	mbw_ms = rsb__calloc((cln+extra_levels) * sizeof(*mbw_ms));

	if(!mbw_ms)
	{
		goto err;
	}

	RSB_INFO("# This test will measure times in scanning arrays sized and aligned to fit in caches.\n");
	RSB_INFO("# %d cache levels detected\n",cln);

	/* we do measure for each level in the cache hierarchy plus extra_levels */
	for(cl=1;cl<=cln+extra_levels;++cl)
	{
		/* timing for cache level cl  */

		if(cl<=cln)
			cs = rsb__get_lnc_size(cl);
		else
			cs=2*cs;

		if(cs<1)
		{
			RSB_ERROR("#uhm. overflow ?\n");
			goto err;
		}
		mbw_m.so=sizeof(w_t);
		mbw_m.sz=cs;
		mbw_m.times=0;/* mbw_test will probe for a default reasonable time */
		mbw_m.cln=cln;
		mbw_m.cl=cl;
		mbw_m.hlcs = rsb__get_lnc_size(cln);
		if(mbw_m.hlcs<1)
			goto err;

		if(RSB_SOME_ERROR(mbw_test(&mbw_m)))
			goto err;

		memcpy( &(mbw_ms[cl-1]) ,&mbw_m,sizeof(struct rsb_mbw_m_t));
	}

	cm->mb=mbw_ms;
	cm->cln=cln;
	cm->extra_level=extra_levels;
	return RSB_ERR_NO_ERROR;
err:
	RSB_CONDITIONAL_FREE(mbw_ms);
	RSB_STDERR("An error occurred during memory benchmarking.\n");
	return RSB_ERR_GENERIC_ERROR;
}

static rsb_err_t rsb__print_mem_hier_timings(struct rsb_mbw_es_t *esp, const struct rsb_mbw_cm_t * cm)
{
	/**
	 * \ingroup gr_internals
	 * Quiet if esp != NULL.
	 */
	long cl;
	const long print_ratio=1;

	if(!cm)
		return RSB_ERR_BADARGS;

	for(cl=1;cl<=cm->cln+cm->extra_level;++cl)
	{
		if(!esp)
		{
			if(cl<=cm->cln)
				RSB_INFO("#Level %ld:\n",cl);
			else
				RSB_INFO("#Level %ld (RAM) (sample size 2^%ld times the last cache size):\n",cm->cln+1,cl-cm->extra_level);
		}
		mbw_printf(esp,&cm->mb[cl-1],cl);

		if(!esp)
		if(cl>1 && print_ratio)
			if(RSB_SOME_ERROR(mbw_ratio_printf(&cm->mb[cl-1],&cm->mb[cl-2])))
			{ RSB_ERROR(RSB_ERRM_ES); /* Note: may propagate error code */ }

		if( esp ) 
			esp += RSB_MB_N;
	}
	return RSB_ERR_NO_ERROR;
}

#if RSB_OBSOLETE_QUARANTINE_UNUSED
static rsb_err_t rsb_tlb_benchmark(void)
{
	/**
		Unfinished code.

		Performance of this benchmark should expose shortcomings of memory fragmentation on performance.
	 */
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	size_t sz,psz,pn,wpp,times;
	const size_t K=1024;
	w_t * p=NULL;
	w_t c=0;
	rsb_int i,j;
	rsb_time_t t;

	RSB_WARN("TLB benchmark code is unfinished!\n");
	RSB_STDERR("#TLB benchmark.\n");
	for(sz=K*K/2;sz<K*K*K;sz*=2)
	{
		double mBps = 1.0;

		psz=4096;
		pn=sz/psz;
		wpp=psz/sizeof(w_t);
		times=100;
		p = rsb__aligned_malloc( sz , sz );
		if(!p)
			goto err;
		
		t = -rsb_time();
		for(j=0;j<times;++j)
		{
			rsb_time_t ft = -rsb_time();

			errval = rsb__flush_cache(0);
			if( RSB_SOME_ERROR(errval) ) 
				goto err;
			ft += rsb_time();
			t -= ft;
			for(i=0;i<pn;++i)
			{
				c+=p[i*wpp];
			}
		}
		t += rsb_time();
		RSB__FREE(p);

		mBps*=pn*sizeof(w_t);
		mBps/=t;
		mBps*=times;
		mBps/=1024*1024;

		RSB_STDERR("#TLB timing benchmark : scanned %zd entries spaced %zd bytes across %zd bytes in %lg s (%lg MBps)\n",pn,psz,sz,t,mBps);
	}

err:
	return errval;
}
#endif /* RSB_OBSOLETE_QUARANTINE_UNUSED */

static rsb_err_t rsb_indirect_scan_benchmark(long ss, long * spiffero, long times, rsb_time_t *bt)
{
	/**
	*/
	rsb_err_t errval = RSB_ERR_INTERNAL_ERROR;
	rsb_time_t dt,rt,lt;
	rsb_coo_idx_t *IA=NULL;		/* the array to be scanned */
	rsb_coo_idx_t acc=0;			/* accumulator */
	rsb_nnz_idx_t *IP=NULL;		/* the array setting the scan order */
	void *CA=NULL;				/* the array setting the scan order */
	long els=0,fas=0;
	long i,ab,it;

	times = RSB_MAX(1,times);
	els=ss/(sizeof(rsb_coo_idx_t)),fas=4*ss;	/* the number of elements   */
	if(els<1 || fas<1)
		{ RSB_ERROR(RSB_ERRM_ES); goto err; }
	ab=sizeof(rsb_nnz_idx_t)*els+sizeof(rsb_coo_idx_t)*els;
	IP = rsb__malloc(sizeof(rsb_nnz_idx_t)*els);
	IA = rsb__malloc(sizeof(rsb_coo_idx_t)*els);
	CA = rsb__malloc(fas);
	if(!IP){RSB_ERROR(RSB_ERRM_ES);goto erri;}
	if(!IA){RSB_ERROR(RSB_ERRM_ES);goto erri;}
	if(!CA){RSB_ERROR(RSB_ERRM_ES);goto erri;}

	// random fill
	for(i=0;i<els;++i)
		IA[i]=rand()%els;
	// first phase: random scan
	for(i=0;i<els;++i)
		IP[i]=rand()%els;
	rsb__scan_cache(CA,fas,RSB_MB_FLUSH,RSB_FLUSH_TIMES,NULL);	/* flush cache */
	dt = - rsb_time();
	for(it=0;it<times;++it)
		for(i=0;i<els;++i)
			acc+=IA[IP[i]];
	dt += rsb_time();
	rt=dt/times;

	// second phase: linear scan
	for(i=0;i<els;++i)
		IP[i]=i;
	rsb__scan_cache(CA,fas,RSB_MB_FLUSH,RSB_FLUSH_TIMES,NULL);	/* flush cache */
	dt = - rsb_time();
	for(it=0;it<times;++it)
		for(i=0;i<els;++i)
			acc+=IA[IP[i]];
	dt += rsb_time();
	lt=dt/times;
	if(spiffero)
		RSB_INFO("for %ld elements, %ld bytes, random access time: %lg, linear access time: %lg, ratio %lg (%ld times)\n",els,ab,rt,lt,rt/lt,times);
	else
		;/* tuning mode only */
	if(spiffero)
		*spiffero+=acc;
	else
	{	RSB_INFO("ignore this value: %zd\n",(size_t)acc);}
	if(bt)
		*bt=(rt+lt)*times;
	errval = RSB_ERR_NO_ERROR;
erri:
	RSB_CONDITIONAL_FREE(CA);
	RSB_CONDITIONAL_FREE(IA);
	RSB_CONDITIONAL_FREE(IP);
err:
	return errval;
}

	static void rsb__memory_benchmark_p1_memcpy(void)
	{
		// Phase 1 of memory benchmark: MEMCPY-like.
		const long lcs = rsb__get_lastlevel_c_size();
		long times = RSB_MEMSCAN_MIN_TIMES, tinc = 1;
		const long wet = rsb_get_num_threads();
		const long fsm = rsb__sys_free_system_memory();
		int ci;
		const size_t wss = RSB_MIN(fsm / 3, 4*wet*lcs);
		long i;
		const long els = wss/sizeof(rsb_coo_idx_t);
		rsb_coo_idx_t *IS=NULL,*ID=NULL;
		rsb_time_t bt = RSB_REAL_ZERO,dt = RSB_REAL_ZERO;

		if(wss<1)
			goto errm;
		IS = rsb__malloc(wss);
		ID = rsb__calloc(wss);
		if(!IS || !ID)
			goto errm;
		for(i=0;i<els;++i)
			IS[i]=rand()%els;

		while( times<(RSB_MEMSCAN_MAX_TIMES/2) && bt<RSB_MEMSCAN_TIME )
		{
			int it;
			times += tinc;
			dt = - rsb_time();
			for(it=0;it<tinc;++it)
				RSB_A_MEMCPY_parallel(ID,IS,0,0,wss/RSB_CHAR_BIT,RSB_CHAR_BIT);
			dt += rsb_time();
			bt+=dt;
			tinc*=2;
		}
		RSB_INFO("# entering memory benchmark, phase 1 (%ldx repeated parallel MEMCPY of %zd bytes)\n", times, wss);

		if(0)
		{	RSB_WARN("first estimate of MEMCPY on %zd bytes: %lg GB/s (%ld times in %lg s)\n",(size_t)wss,
			((((double)wss)*times)/bt)/1.e9,times,bt);
		}
		for(i=0;i<els;++i)
			IS[i]=rand()%els;
		for(ci=1;ci<=wet;++ci)
		{
			int it;

			rsb__flush_cache(0);

			rsb__set_num_threads(ci);
			dt = - rsb_time();
			for(it=0;it<times;++it)
				RSB_A_MEMCPY_parallel(ID,IS,0,0,wss/RSB_CHAR_BIT,RSB_CHAR_BIT);
			dt += rsb_time();
			bt=dt;
			RSB_WARN("%zu cores MEMCPY on %zd bytes: %lg GB/s (%ld times in %lg s)\n",(size_t)ci,wss,
				((((double)wss)*times)/bt)/1.e9,times,bt);
		}
		rsb__set_num_threads(wet);
errm:
		RSB_CONDITIONAL_FREE(IS);
		RSB_CONDITIONAL_FREE(ID);
	}

	static void rsb__memory_benchmark_p2(void)
	{
		// Phase 2 of memory benchmark.
		rsb_err_t errval = RSB_ERR_NO_ERROR;
		const long fcs = rsb__get_first_level_c_size();
		const long lcs = rsb__get_lastlevel_c_size();
		const long rcs = lcs;
		const long fsm = rsb__sys_free_system_memory();
		long spiffero=0,times = RSB_MEMSCAN_MIN_TIMES,tinc=1,reftimes=0;
		rsb_time_t bt = RSB_REAL_ZERO,dt = RSB_REAL_ZERO;

		while( times<(RSB_MEMSCAN_MAX_TIMES/2) && bt<RSB_MEMSCAN_TIME )
		{
			times += tinc;
			errval |= rsb_indirect_scan_benchmark(rcs,NULL,tinc,&dt);
			bt+=dt;
			tinc *= 2;
		}
		RSB_INFO("# entering memory benchmark, phase 2 (%ldx repeated parallel MEMCPY of %ld bytes)\n", times, fsm);
		RSB_WARN("begin experimental indirect array scan benchmark\n");
		reftimes = times;
		RSB_WARN("autotuning done. will proceed with presumably %lg s samples\n",bt);
#define RSB_MEMSCAN_TIMES_FROM_REF(reftimes,refsize,bufsize) \
	((refsize)<(bufsize)? \
	RSB_MAX(reftimes/((bufsize)/(refsize)),RSB_MEMSCAN_MIN_TIMES): \
	RSB_MAX(((refsize)/(bufsize))*reftimes,RSB_MEMSCAN_MIN_TIMES))

		times = RSB_MEMSCAN_TIMES_FROM_REF(reftimes,rcs,fcs);
		errval|=rsb_indirect_scan_benchmark(fcs,&spiffero,times,&bt);
		times = RSB_MEMSCAN_TIMES_FROM_REF(reftimes,rcs,(lcs-fcs)/2);
		errval|=rsb_indirect_scan_benchmark(fcs+(lcs-fcs)/2,&spiffero,times,&bt);
		times = RSB_MEMSCAN_TIMES_FROM_REF(reftimes,rcs,lcs);
		errval|=rsb_indirect_scan_benchmark(lcs,&spiffero,times,&bt);
		times = RSB_MEMSCAN_TIMES_FROM_REF(reftimes,rcs,4*lcs);
		errval|=rsb_indirect_scan_benchmark(4*lcs,&spiffero,times,&bt);
		times = RSB_MEMSCAN_TIMES_FROM_REF(reftimes,rcs,16*lcs);
		errval|=rsb_indirect_scan_benchmark(RSB_MIN(fsm,16*lcs),&spiffero,times/2,&bt);
		times = RSB_MEMSCAN_TIMES_FROM_REF(reftimes,rcs,32*lcs);
		errval|=rsb_indirect_scan_benchmark(RSB_MIN(fsm,32*lcs),&spiffero,times/4,&bt);
		times = RSB_MEMSCAN_TIMES_FROM_REF(reftimes,rcs,64*lcs);
		errval|=rsb_indirect_scan_benchmark(RSB_MIN(fsm,64*lcs),&spiffero,times/4,&bt);
		RSB_INFO("#please ignore this value: %ld\n",spiffero);
		RSB_INFO("end experimental indirect array scan benchmark\n");
#undef RSB_MEMSCAN_TIMES_FROM_REF
		// Note: we ignore errval.
	}

rsb_err_t rsb__memory_benchmark(struct rsb_mbw_et_t * mbetp)
{
	/**
	 * Benchmark the memory hierarchy.
	 */
	struct rsb_mbw_cm_t cm;
	rsb_err_t errval = RSB_ERR_NO_ERROR;

	RSB_DEBUG_ASSERT(rsb_global_session_handle.rsb_g_initialized == RSB_BOOL_TRUE);

	if(mbetp)
		goto onlyforrecord;

	rsb__memory_benchmark_p1_memcpy();

	rsb__memory_benchmark_p2();
	
#if RSB_OBSOLETE_QUARANTINE_UNUSED
	rsb_tlb_benchmark(); /* Note: temporarily here (to be completed). */
#endif /* RSB_OBSOLETE_QUARANTINE_UNUSED */

	RSB_INFO("# entering memory benchmark, phase 3\n");
onlyforrecord:	/* start here if only taking record */

	if(RSB_SOME_ERROR(rsb__mem_hier_timings(&cm)))
		goto err;

	if( ! mbetp ) /* if struct then no print needed */
		if(RSB_SOME_ERROR(rsb__print_mem_hier_timings(NULL,&cm)))
			goto err;

	if( mbetp )
	{
		RSB_DO_ERROR_CUMULATE(errval,rsb__mbw_es_fill(mbetp,&cm));
		rsb__do_perror(NULL,errval);
	}

	RSB_CONDITIONAL_FREE(cm.mb);
	if(RSB_SOME_ERROR(errval))
		goto err;

	return RSB_ERR_NO_ERROR;
err:
	return RSB_ERR_GENERIC_ERROR;
}

rsb_err_t rsb__flush_cache(size_t sz)
{
	/**
	 Flush caches by repeated memory scans.
	 */
	void * fc=NULL;
	const size_t times = RSB_MIN_CACHE_FLUSH_SCAN_TIMES;
	rsb_err_t errval = RSB_ERR_NO_ERROR;

	if(sz==0)
	{
		sz = rsb__get_lastlevel_c_size();
		sz = RSB_MAX(sz,2*sz);
	}
	fc = rsb__calloc(sz);
	if(fc==NULL)
		return RSB_ERR_ENOMEM;
	errval = rsb__scan_cache(fc,sz,RSB_MB_FLUSH,times,NULL);	/* flush cache */
	RSB_CONDITIONAL_FREE(fc);	
	RSB_DO_ERR_RETURN(errval)
}

rsb_err_t rsb__mbw_es_print(const struct rsb_mbw_et_t * mbetp)
{
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	rsb_int_t sni;

	if(mbetp)
	{
		// RSB_STDOUT("Record comprises %d memory benchmark samples.\n",mbetp->sn);
                // RSB_STDOUT("Record comprises %d memory benchmark samples (each record %zd bytes).\n",mbetp->sn,sizeof(mbetp->et[0]));
                // RSB_STDOUT("offset of sz : %zd bytes\n",((void*)&(mbetp->et[0].sz ))-(void*)(&mbetp->et[0]));
                // RSB_STDOUT("offset of mbt: %zd bytes\n",((void*)&(mbetp->et[0].mbt))-(void*)(&mbetp->et[0]));
                // RSB_STDOUT("offset of lvl: %zd bytes\n",((void*)&(mbetp->et[0].lvl))-(void*)(&mbetp->et[0]));
                // RSB_STDOUT("offset of bw : %zd bytes\n",((void*)&(mbetp->et[0].bw ))-(void*)(&mbetp->et[0]));
		RSB_INFO("#%-32s\tsize\tlevel\tbw(MBps)\n","");
	}

	for ( sni = 0; sni < mbetp->sn; ++sni )
	{
		printf("%-32s\t%d\t%d\t%lg\n",rsb__mbw_s2s(mbetp->et[sni].mbt),mbetp->et[sni].sz,mbetp->et[sni].lvl,mbetp->et[sni].bw);
	}
	return errval;
}

rsb_err_t rsb__mbw_es_fill(struct rsb_mbw_et_t * mbetp, const struct rsb_mbw_cm_t * cm)
{
	/*
	 * accept an unused struct rsb_mbw_et_t; allocate and fill it.
	 * */
	rsb_err_t errval = RSB_ERR_NO_ERROR;

	if(!cm)
		return RSB_ERR_BADARGS;

	if(!mbetp || cm->cln == 0)
		goto ret;

	RSB_BZERO(mbetp,sizeof(*mbetp));
	mbetp->sn=(cm->cln+cm->extra_level)*RSB_MB_N;
	mbetp->et=rsb__calloc( mbetp->sn * sizeof(struct rsb_mbw_es_t) );

	RSB_INFO("Will fill struct with %d samples...\n",mbetp->sn);

	if ( ! mbetp->et )
	{
		errval = RSB_ERR_ENOMEM;
		goto ret;
	}


	if (rsb__print_mem_hier_timings(mbetp->et,cm))
		goto ret;

	return RSB_ERR_NO_ERROR;
ret:
	return errval;
}

#if RSB_OBSOLETE_QUARANTINE_UNUSED
static rsb_err_t rsb__mbw_es_clone(struct rsb_mbw_et_t * mbetcp, const struct rsb_mbw_et_t * mbetsp)
{
	// unused.
	rsb_err_t errval = RSB_ERR_NO_ERROR;

	RSB_BZERO(mbetcp,sizeof(*mbetcp));
	if( mbetsp->et )
	{
		mbetcp->et = rsb__clone_area(mbetsp->et,sizeof(*mbetsp->et)*mbetsp->sn);
		if(mbetcp->et)
			mbetcp->sn = mbetsp->sn;
		else
			errval = RSB_ERR_ENOMEM;
	}
	return errval;
}
#endif /* RSB_OBSOLETE_QUARANTINE_UNUSED */

rsb_err_t rsb__mbw_es_free(struct rsb_mbw_et_t * mbetp)
{
	rsb_err_t errval = RSB_ERR_NO_ERROR;

	if(!mbetp)
		goto ret;

	RSB_CONDITIONAL_FREE(mbetp->et);	
	RSB_BZERO(mbetp,sizeof(*mbetp));
ret:
	return errval;
}

/* @endcond */