File: rsb_prec.c

package info (click to toggle)
librsb 1.3.0.2%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,792 kB
  • sloc: ansic: 274,405; f90: 108,468; cpp: 16,934; sh: 6,761; makefile: 1,679; objc: 692; awk: 22; sed: 1
file content (358 lines) | stat: -rw-r--r-- 10,290 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

/* @cond INNERDOC */
/**
 * @file
 * @brief
 * Auxiliary functions.
 */

/*

Copyright (C) 2008-2022 Michele Martone

This file is part of librsb.

librsb is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

librsb is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public
License along with librsb; see the file COPYING.
If not, see <http://www.gnu.org/licenses/>.

*/
/*
 The code in this file was generated automatically by an M4 script. 
 It is not meant to be used as an API (Application Programming Interface).
 p.s.: right now, only row major matrix access is considered.

 */


#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#include "rsb_common.h"
static rsb_err_t rsb_do_csr_ilu0_DOUBLE(struct rsb_coo_mtx_t * coop){
	/**
	 * \ingroup gr_internals
		FIXME: INCOMPLETE, EXPERIMENTAL, TEMPORARILY HERE
		On exit, the matrix will contain the L and U factors of a pattern preserving incomplete LU factorization (ILU 0).
	*/
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	rsb_coo_idx_t i;

{
	double *VA = coop->VA;
	const rsb_coo_idx_t *PA = coop->IA;
	const rsb_coo_idx_t *JA = coop->JA;
	for(i=1;i<coop->nr;++i)
	{
		const rsb_nnz_idx_t ifp = PA[i],ilp = PA[i+1],irnz = ilp-ifp;
		rsb_nnz_idx_t idp = RSB_MARKER_NNZ_VALUE,ikp = RSB_MARKER_NNZ_VALUE;
		if(irnz)
		{

			idp = rsb__nnz_split_coo_bsearch(JA+ifp,i,irnz)+ifp;
			assert(idp<=ilp);
			assert(idp>=ifp);
			for(ikp=ifp;ikp<idp;++ikp)// k = 1...i-1
			{
				/* FIXME: write a sparse vectors dot product macro and apply it here */
				const rsb_nnz_idx_t k = JA[ikp],kfp = PA[k],klp = PA[k+1],krnz = klp-kfp;
				const int kdp = rsb__nnz_split_coo_bsearch(JA+kfp,k,krnz)+kfp;
				rsb_nnz_idx_t kjp = kfp,ijp = ikp+1;
				VA[ikp]/=VA[kdp];
				/* FIXME: to optimize this phase, we should loop on the shorter row */
				for(;ijp<ilp;++ijp)// j = k+1...n
				{
					for(;JA[kjp]<JA[ijp] && kjp<klp;++kjp)
						;
					if(kjp==klp)
						goto out;
					/* JA[kjp]>=JA[ijp] */
					for(;JA[kjp]>JA[ijp] && ijp<ilp;++ijp)
						;
					if(ijp==ilp)
						goto out;
					/* JA[kjp]==JA[ijp] */
					VA[ijp]-=VA[ikp]*VA[kjp];
				}
out:
				RSB_NULL_STATEMENT_FOR_COMPILER_HAPPINESS
				
			}
		}
	}
}
	RSB_DO_ERR_RETURN(errval)
}
static rsb_err_t rsb_do_csr_ilu0_FLOAT(struct rsb_coo_mtx_t * coop){
	/**
	 * \ingroup gr_internals
		FIXME: INCOMPLETE, EXPERIMENTAL, TEMPORARILY HERE
		On exit, the matrix will contain the L and U factors of a pattern preserving incomplete LU factorization (ILU 0).
	*/
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	rsb_coo_idx_t i;

{
	float *VA = coop->VA;
	const rsb_coo_idx_t *PA = coop->IA;
	const rsb_coo_idx_t *JA = coop->JA;
	for(i=1;i<coop->nr;++i)
	{
		const rsb_nnz_idx_t ifp = PA[i],ilp = PA[i+1],irnz = ilp-ifp;
		rsb_nnz_idx_t idp = RSB_MARKER_NNZ_VALUE,ikp = RSB_MARKER_NNZ_VALUE;
		if(irnz)
		{

			idp = rsb__nnz_split_coo_bsearch(JA+ifp,i,irnz)+ifp;
			assert(idp<=ilp);
			assert(idp>=ifp);
			for(ikp=ifp;ikp<idp;++ikp)// k = 1...i-1
			{
				/* FIXME: write a sparse vectors dot product macro and apply it here */
				const rsb_nnz_idx_t k = JA[ikp],kfp = PA[k],klp = PA[k+1],krnz = klp-kfp;
				const int kdp = rsb__nnz_split_coo_bsearch(JA+kfp,k,krnz)+kfp;
				rsb_nnz_idx_t kjp = kfp,ijp = ikp+1;
				VA[ikp]/=VA[kdp];
				/* FIXME: to optimize this phase, we should loop on the shorter row */
				for(;ijp<ilp;++ijp)// j = k+1...n
				{
					for(;JA[kjp]<JA[ijp] && kjp<klp;++kjp)
						;
					if(kjp==klp)
						goto out;
					/* JA[kjp]>=JA[ijp] */
					for(;JA[kjp]>JA[ijp] && ijp<ilp;++ijp)
						;
					if(ijp==ilp)
						goto out;
					/* JA[kjp]==JA[ijp] */
					VA[ijp]-=VA[ikp]*VA[kjp];
				}
out:
				RSB_NULL_STATEMENT_FOR_COMPILER_HAPPINESS
				
			}
		}
	}
}
	RSB_DO_ERR_RETURN(errval)
}
static rsb_err_t rsb_do_csr_ilu0_FLOAT_COMPLEX(struct rsb_coo_mtx_t * coop){
	/**
	 * \ingroup gr_internals
		FIXME: INCOMPLETE, EXPERIMENTAL, TEMPORARILY HERE
		On exit, the matrix will contain the L and U factors of a pattern preserving incomplete LU factorization (ILU 0).
	*/
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	rsb_coo_idx_t i;

{
	float complex *VA = coop->VA;
	const rsb_coo_idx_t *PA = coop->IA;
	const rsb_coo_idx_t *JA = coop->JA;
	for(i=1;i<coop->nr;++i)
	{
		const rsb_nnz_idx_t ifp = PA[i],ilp = PA[i+1],irnz = ilp-ifp;
		rsb_nnz_idx_t idp = RSB_MARKER_NNZ_VALUE,ikp = RSB_MARKER_NNZ_VALUE;
		if(irnz)
		{

			idp = rsb__nnz_split_coo_bsearch(JA+ifp,i,irnz)+ifp;
			assert(idp<=ilp);
			assert(idp>=ifp);
			for(ikp=ifp;ikp<idp;++ikp)// k = 1...i-1
			{
				/* FIXME: write a sparse vectors dot product macro and apply it here */
				const rsb_nnz_idx_t k = JA[ikp],kfp = PA[k],klp = PA[k+1],krnz = klp-kfp;
				const int kdp = rsb__nnz_split_coo_bsearch(JA+kfp,k,krnz)+kfp;
				rsb_nnz_idx_t kjp = kfp,ijp = ikp+1;
				VA[ikp]/=VA[kdp];
				/* FIXME: to optimize this phase, we should loop on the shorter row */
				for(;ijp<ilp;++ijp)// j = k+1...n
				{
					for(;JA[kjp]<JA[ijp] && kjp<klp;++kjp)
						;
					if(kjp==klp)
						goto out;
					/* JA[kjp]>=JA[ijp] */
					for(;JA[kjp]>JA[ijp] && ijp<ilp;++ijp)
						;
					if(ijp==ilp)
						goto out;
					/* JA[kjp]==JA[ijp] */
					VA[ijp]-=VA[ikp]*VA[kjp];
				}
out:
				RSB_NULL_STATEMENT_FOR_COMPILER_HAPPINESS
				
			}
		}
	}
}
	RSB_DO_ERR_RETURN(errval)
}
static rsb_err_t rsb_do_csr_ilu0_DOUBLE_COMPLEX(struct rsb_coo_mtx_t * coop){
	/**
	 * \ingroup gr_internals
		FIXME: INCOMPLETE, EXPERIMENTAL, TEMPORARILY HERE
		On exit, the matrix will contain the L and U factors of a pattern preserving incomplete LU factorization (ILU 0).
	*/
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	rsb_coo_idx_t i;

{
	double complex *VA = coop->VA;
	const rsb_coo_idx_t *PA = coop->IA;
	const rsb_coo_idx_t *JA = coop->JA;
	for(i=1;i<coop->nr;++i)
	{
		const rsb_nnz_idx_t ifp = PA[i],ilp = PA[i+1],irnz = ilp-ifp;
		rsb_nnz_idx_t idp = RSB_MARKER_NNZ_VALUE,ikp = RSB_MARKER_NNZ_VALUE;
		if(irnz)
		{

			idp = rsb__nnz_split_coo_bsearch(JA+ifp,i,irnz)+ifp;
			assert(idp<=ilp);
			assert(idp>=ifp);
			for(ikp=ifp;ikp<idp;++ikp)// k = 1...i-1
			{
				/* FIXME: write a sparse vectors dot product macro and apply it here */
				const rsb_nnz_idx_t k = JA[ikp],kfp = PA[k],klp = PA[k+1],krnz = klp-kfp;
				const int kdp = rsb__nnz_split_coo_bsearch(JA+kfp,k,krnz)+kfp;
				rsb_nnz_idx_t kjp = kfp,ijp = ikp+1;
				VA[ikp]/=VA[kdp];
				/* FIXME: to optimize this phase, we should loop on the shorter row */
				for(;ijp<ilp;++ijp)// j = k+1...n
				{
					for(;JA[kjp]<JA[ijp] && kjp<klp;++kjp)
						;
					if(kjp==klp)
						goto out;
					/* JA[kjp]>=JA[ijp] */
					for(;JA[kjp]>JA[ijp] && ijp<ilp;++ijp)
						;
					if(ijp==ilp)
						goto out;
					/* JA[kjp]==JA[ijp] */
					VA[ijp]-=VA[ikp]*VA[kjp];
				}
out:
				RSB_NULL_STATEMENT_FOR_COMPILER_HAPPINESS
				
			}
		}
	}
}
	RSB_DO_ERR_RETURN(errval)
}

rsb_err_t rsb__prec_ilu0(struct rsb_mtx_t * mtxAp){
	rsb_err_t errval = RSB_ERR_NO_ERROR;
	struct rsb_coo_mtx_t coo;

	if(!mtxAp)
	{
		RSB_ERROR(RSB_ERRM_ES);
		errval = RSB_ERR_BADARGS;
		goto err;
	}

	if(     !rsb__is_terminal_recursive_matrix(mtxAp) ||
		!rsb__is_css_matrix(mtxAp) ||
		(mtxAp->flags & RSB_FLAG_USE_HALFWORD_INDICES) ||
		rsb__is_symmetric(mtxAp) ||
		!rsb__is_square(mtxAp) ||
		rsb__submatrices(mtxAp)!=1 ||
 		RSB_DO_FLAG_HAS(mtxAp->flags,RSB_FLAG_UNIT_DIAG_IMPLICIT)
		)
	{
		if(!rsb__is_terminal_recursive_matrix(mtxAp))
			RSB_ERROR(RSB_ERRM_NT);
		if(!rsb__is_css_matrix(mtxAp))
			RSB_ERROR("not a CSR matrix!\n");
		/*if(rsb__is_root_matrix(mtxAp)!=RSB_BOOL_TRUE)
			RSB_ERROR("non-root matrix!\n");*/
		if( rsb__submatrices(mtxAp)!=1)
			RSB_ERROR("non-single submatrix (%d)!\n",rsb__submatrices(mtxAp));
		if( rsb__is_symmetric(mtxAp))
			RSB_ERROR("matrix is symmetric!\n");
		if(!rsb__is_square(mtxAp))
			RSB_ERROR(RSB_ERRM_NON_SQUARE);
		RSB_ERROR(RSB_ERRM_ES);
		errval = RSB_ERR_BADARGS;
		goto err;
	}
	if(mtxAp->nr==1)
		goto err;
	if((errval = rsb__project_rsb_to_coo(mtxAp,&coo))!=RSB_ERR_NO_ERROR)
		goto err;
#ifdef RSB_NUMERICAL_TYPE_DOUBLE 
	if( mtxAp->typecode == RSB_NUMERICAL_TYPE_DOUBLE  )
		return rsb_do_csr_ilu0_DOUBLE(&coo);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
#ifdef RSB_NUMERICAL_TYPE_FLOAT 
	if( mtxAp->typecode == RSB_NUMERICAL_TYPE_FLOAT  )
		return rsb_do_csr_ilu0_FLOAT(&coo);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
#ifdef RSB_NUMERICAL_TYPE_FLOAT_COMPLEX 
	if( mtxAp->typecode == RSB_NUMERICAL_TYPE_FLOAT_COMPLEX  )
		return rsb_do_csr_ilu0_FLOAT_COMPLEX(&coo);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
#ifdef RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX 
	if( mtxAp->typecode == RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX  )
		return rsb_do_csr_ilu0_DOUBLE_COMPLEX(&coo);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
	errval = RSB_ERR_INTERNAL_ERROR;
err:
	RSB_DO_ERR_RETURN(errval)
}

rsb_err_t rsb__prec_csr_ilu0(struct rsb_coo_mtx_t * coop){
	// FIXME: temporary
	if(coop->nr==1)
		goto err;
#ifdef RSB_NUMERICAL_TYPE_DOUBLE 
	if( coop->typecode == RSB_NUMERICAL_TYPE_DOUBLE  )
				return rsb_do_csr_ilu0_DOUBLE(coop);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
#ifdef RSB_NUMERICAL_TYPE_FLOAT 
	if( coop->typecode == RSB_NUMERICAL_TYPE_FLOAT  )
				return rsb_do_csr_ilu0_FLOAT(coop);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
#ifdef RSB_NUMERICAL_TYPE_FLOAT_COMPLEX 
	if( coop->typecode == RSB_NUMERICAL_TYPE_FLOAT_COMPLEX  )
				return rsb_do_csr_ilu0_FLOAT_COMPLEX(coop);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
#ifdef RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX 
	if( coop->typecode == RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX  )
				return rsb_do_csr_ilu0_DOUBLE_COMPLEX(coop);
	else 
#endif /* RSB_M4_NUMERICAL_TYPE_PREPROCESSOR_SYMBOL(mtype) */
err:
	return RSB_ERR_INTERNAL_ERROR;
}

#ifdef __cplusplus
}
#endif /* __cplusplus */


/* @endcond */