1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*
NASA/TRMM, Code 910.1.
This is the TRMM Office Radar Software Library.
Copyright (C) 1996, 1997
John H. Merritt
Space Applications Corporation
Vienna, Virginia
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Mike Kolander
* Space Applications Corporation
* NASA/Goddard 910.1
*/
#include <stdlib.h>
#include <string.h>
#include "rsl.h"
extern int radar_verbose_flag;
/*************************************************************/
/* */
/* RSL_free_slice */
/* */
/*************************************************************/
void RSL_free_slice(Slice *slice)
{
/* Frees memory allocated to a slice structure, and associated
pointer and data arrays.
*/
if (slice != NULL)
{
if (slice->data != NULL)
{
if (slice->data[0] != NULL)
free(slice->data[0]); /* Free the 2D data array. */
free(slice->data); /* Free the vector of pointers. */
}
free(slice); /* Free the slice structure. */
}
}
/*************************************************************/
/* */
/* RSL_new_slice */
/* */
/*************************************************************/
Slice *RSL_new_slice(int nrows, int ncols)
{
/* Allocates memory for a slice structure, and associated pointer
and data arrays.
*/
Slice *s;
Slice_value *data;
int row;
/* Allocate a slice. */
s = (Slice *)calloc(1, sizeof(Slice));
if (s == NULL) perror("RSL_new_slice");
/* Allocate a vector of 'nrows' pointers. */
s->data = (Slice_value **)calloc(nrows, sizeof(Slice_value *));
if (s->data == NULL) perror("RSL_new_slice");
/* Allocate a 2 dimensional array for the actual data values. */
data = (Slice_value *)calloc(nrows*ncols, sizeof(Slice_value));
if (data == NULL) perror("RSL_new_slice");
/* Fill all the 'nrows' pointer slots created above. */
for (row=0; row<nrows; row++)
s->data[row] = data + row*ncols;
return(s);
}
/*************************************************************/
/* */
/* RSL_new_cube */
/* */
/*************************************************************/
Cube *RSL_new_cube(int ncarpi)
{
/* Allocate memory for a cube structure, and an associated array
of carpi pointers.
*/
Cube *cube;
cube = (Cube *) calloc(1, sizeof(Cube));
if (cube == NULL) return(NULL);
cube->carpi = (Carpi **) calloc(ncarpi, sizeof(Carpi *));
if (cube->carpi == NULL) return(NULL);
return(cube);
}
/*************************************************************/
/* */
/* RSL_free_cube */
/* */
/*************************************************************/
void RSL_free_cube(Cube *cube)
{
/* Frees memory allocated to a cube structure and associated
carpi structures.
*/
int j;
if (cube != NULL)
{
if (cube->carpi != NULL)
{
for (j=0; j<cube->nz; j++)
if (cube->carpi[j] != NULL)
RSL_free_carpi(cube->carpi[j]);
free(cube->carpi);
}
free(cube);
}
}
/*************************************************************/
/* */
/* RSL_volume_to_cube */
/* */
/*************************************************************/
Cube *RSL_volume_to_cube(Volume *v, float dx, float dy, float dz,
int nx, int ny, int nz, float grnd_r,
int radar_x, int radar_y, int radar_z)
/* radar_z = 0 is the only thing that makes sense. Why pass it? */
{
float lat=0;
float lon=0;
int i;
Cube *cube;
if (v == NULL) return NULL;
/* check validity of radar site coordinates in cube. */
if (radar_z != 0) return NULL;
if ((radar_x < 0) || (radar_x > nx)) return NULL;
if ((radar_y < 0) || (radar_y > ny)) return NULL;
cube = (Cube *)RSL_new_cube(nz);
if (cube == NULL) return NULL;
cube->nx = nx;
cube->ny = ny;
cube->nz = nz;
cube->dx = dx;
cube->dy = dy;
cube->dz = dz;
if (v->h.type_str != (char *) NULL)
cube->data_type = (char *)strdup(v->h.type_str);
cube->lat = lat;
cube->lon = lon;
/* Create nz carpis */
for (i=0; i<nz; i++)
cube->carpi[i] = (Carpi *)RSL_volume_to_carpi(v, (i+1)*dz, grnd_r,
dx, dy, nx, ny,
radar_x, radar_y,
lat, lon);
return cube;
}
/*************************************************************/
/* */
/* RSL_get_slice_from_cube */
/* */
/*************************************************************/
Slice *RSL_get_slice_from_cube(Cube *cube, int x, int y, int z)
/*
Check validity of parameters x,y,z , which define the plane of the
required slice. Two of the three parameters must equal -1 and the
third must be nonnegative; eg, the vertical plane y=100 is
specified by the parameters x=-1, y=100, z=-1
Assumes valid ranges for x, y, z are:
0 <= x <= nx-1 , 0 <= y <= ny-1 , 1 <= z <= nz
The range of z starts at 1 , since a cappi (or carpi) at
height z=0 makes no sense.
*/
{
int i, j;
Slice *slice;
if (cube == NULL) return(NULL);
/* Slice defined by the plane y = const */
if ((x == -1) && (z == -1) && (y > -1) && (y < cube->ny))
{
slice = (Slice *) RSL_new_slice(cube->nz, cube->nx);
slice->data_type = (char *)strdup(cube->data_type);
slice->dx = cube->dx;
slice->dy = cube->dz;
slice->nx = cube->nx;
slice->ny = cube->nz;
slice->f = cube->carpi[0]->f;
slice->invf = cube->carpi[0]->invf;
/* Retrieve the required data values from the cube and place into
the slice structure. */
for (j=0; j<cube->nz; j++)
for (i=0; i<cube->nx; i++)
slice->data[j][i] = (Slice_value) cube->carpi[j]->data[y][i];
}
/* Slice defined by the plane x = const */
else if ((y == -1) && (z == -1) && (x > -1) && (x < cube->nx))
{
slice = (Slice *) RSL_new_slice(cube->nz, cube->ny);
slice->data_type = (char *)strdup(cube->data_type);
slice->dx = cube->dy;
slice->dy = cube->dz;
slice->nx = cube->ny;
slice->ny = cube->nz;
slice->f = cube->carpi[0]->f;
slice->invf = cube->carpi[0]->invf;
/* Retrieve the required data values from the cube and place into
the slice structure. */
for (j=0; j<cube->nz; j++)
for (i=0; i<cube->ny; i++)
slice->data[j][i] = (Slice_value) cube->carpi[j]->data[i][x];
}
/* Want slice defined by the plane z = const ; ie, a carpi */
else if ((x == -1) && (y == -1) && (z > 0) && (z <= cube->nz))
{
slice = (Slice *) RSL_new_slice(cube->ny, cube->nx);
slice->data_type = (char *)strdup(cube->data_type);
slice->dx = cube->dx;
slice->dy = cube->dy;
slice->nx = cube->nx;
slice->ny = cube->ny;
slice->f = cube->carpi[z-1]->f;
slice->invf = cube->carpi[z-1]->invf;
/* Just copy carpi data values into slice structure. */
for (j=0; j<cube->ny; j++)
for (i=0; i<cube->nx; i++)
slice->data[j][i] = (Slice_value) cube->carpi[z-1]->data[j][i];
}
else /* Invalid parameters. */
{
if (radar_verbose_flag)
{
fprintf(stderr,"\nRSL_get_slice_from_cube(): passed invalid parameters\n");
fprintf(stderr,"nx:%d ny:%d nz:%d x:%d y:%d z:%d\n",cube->nx,
cube->ny,cube->nz,x,y,z);
}
return(NULL);
}
return(slice);
}
|