1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
/*
NASA/TRMM, Code 910.1.
This is the TRMM Office Radar Software Library.
Copyright (C) 1996, 1997
John H. Merritt
Space Applications Corporation
Vienna, Virginia
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#define USE_RSL_VARS
#include "rsl.h"
extern int radar_verbose_flag;
/* Missing data flag : -32768 when a signed short. */
#define UF_NO_DATA 0X8000
/* Field names. Any convensions may be observed. */
/* Typically:
* DZ = Reflectivity (dBZ).
* VR = Radial Velocity.
* SW = Spectrum Width.
* CZ = Corrected Reflectivity. (Quality controlled: AP removed, etc.)
* ZT = Total Reflectivity (dB(mW)). Becomes UZ in UF files.
* DR = Differential Reflectivity.
* LR = Another DR (LDR).
* ZD = Tina Johnson use this one.
* DM = Received power.
* RH = Rho coefficient.
* PH = Phi (MCTEX parameter).
* XZ = X-band reflectivity.
* CD = Corrected ZD.
* MZ = DZ mask for 1C-51 HDF.
* MD = ZD mask for 1C-51 HDF.
* ZE = Edited reflectivity.
* VE = Edited velocity.
* KD = KDP wavelength*deg/km
* TI = TIME (units unknown).
* These fields may appear in any order in the UF file.
* There are more fields than appear here. See rsl.h.
*/
/* Changed old buffer size (16384) for larger dualpol files. BLK 5/20/2011 */
typedef short UF_buffer[20000]; /* Bigger than documented 4096. */
void swap_uf_buffer(UF_buffer uf);
void swap2(short *buf, int n);
/**********************************************************************/
/* */
/* RSL_radar_to_uf_fp */
/* */
/* By: John Merritt */
/* Space Applications Corporation */
/* May 20, 1994 */
/**********************************************************************/
void RSL_radar_to_uf_fp(Radar *r, FILE *fp)
{
/*
* 1. Fill the UF buffers with data from the Radar structure.
* 2. Write to a stream. Assume open and leave it so.
*/
UF_buffer uf;
/* These are pointers to various locations within the UF buffer 'uf'.
* They are used to index the different components of the UF structure in
* a manor consistant with the UF documentation. For instance, uf_ma[1]
* will be equivalenced to the second word (2 bytes/each) of the UF
* buffer.
*/
short *uf_ma; /* Mandatory header block. */
short *uf_op; /* Optional header block. */
short *uf_lu; /* Local Use header block. */
short *uf_dh; /* Data header. */
short *uf_fh; /* Field header. */
short *uf_data; /* Data. */
/* The length of each header. */
int len_ma, len_op, len_lu, len_dh, len_fh, len_data;
/* Booleans to flag inclusion of headers. */
int q_op, q_lu, q_dh, q_fh;
int current_fh_index;
int scale_factor;
int rec_len, save_rec_len;
int nfield;
float vr_az;
int max_field_names;
struct tm *tm;
time_t the_time;
int i,j,k,m;
int degree, minute;
float second;
int uf_sweep_mode = 1; /* default PPI */
/* Here are the arrays for each field type. Each dimension is the number
* of fields in the radar structure. I do this because the radar organization
* is by volumes (field types) and the UF demands that each ray contain
* all the field types.
*/
Volume **volume;
Sweep **sweep;
Ray *ray;
int *nsweeps;
int nvolumes, maxsweeps, nrays;
int true_nvolumes;
int sweep_num, ray_num, rec_num;
float x;
if (r == NULL) {
fprintf(stderr, "radar_to_uf_fp: radar pointer NULL\n");
return;
}
/* Do all the headers first time around. Then, prune OP and LU. */
q_op = q_lu = q_dh = q_fh = 1;
memset(&uf, 0, sizeof(uf)); /* Init to 0 or NULL for pointers. */
sweep_num = ray_num = rec_num = 0;
true_nvolumes = nvolumes = maxsweeps = nrays = 0;
/* PPI and RHI are enum constants defined in rsl.h */
if (r->h.scan_mode == PPI) uf_sweep_mode = 1;
else if (r->h.scan_mode == RHI) uf_sweep_mode = 3;
/*
* The organization of the Radar structure is by volumes, then sweeps, then
* rays, then gates. This is different from the UF file organization.
* The UF format wants sweeps, rays, then gates for all field types (volumes).
* So, we have to do a back flip, here. This is achieved by maintaining
* an array of volume pointers and sweep pointers, each dimensioned by
* 'nvolumes', which contains the data for the different field types; this
* is our innermost loop. The variables are 'volume[i]' and 'sweep[i]' where
* 'i' is the volume index.
*
* In other words, we are getting all the field types together, when we
* are looping on the number of rays in a sweep, so we can load the UF_buffer
* appropriately.
*/
nvolumes = r->h.nvolumes;
volume = (Volume **) calloc(nvolumes, sizeof(Volume *));
sweep = (Sweep **) calloc(nvolumes, sizeof(Sweep *));
nsweeps = (int *) calloc(nvolumes, sizeof(int));
/* Get the the number of sweeps in the radar structure. This will be
* the main controlling loop variable.
*/
for (i=0; i<nvolumes; i++) {
volume[i] = r->v[i];
if(volume[i]) {
nsweeps[i] = volume[i]->h.nsweeps;
if (nsweeps[i] > maxsweeps) maxsweeps = nsweeps[i];
true_nvolumes++;
}
}
if (radar_verbose_flag) {
fprintf(stderr,"True number of volumes for UF is %d\n", true_nvolumes);
fprintf(stderr,"Maximum # of volumes for UF is %d\n", nvolumes);
}
max_field_names = sizeof(RSL_ftype) / 4;
/*--------
* LOOP for all sweeps (typically 11 or 16 for wsr88d data.
*
*/
for (i=0; i<maxsweeps; i++) {
/* Get the array of volume and sweep pointers; one for each field type. */
nrays = 0;
for (k=0; k<nvolumes; k++) {
if (volume[k]) sweep[k] = volume[k]->sweep[i];
/* Check if we really can access this sweep. Paul discovered that
* if the actual number of sweeps is less than the maximum that we
* could be chasing a bad pointer (a NON-NULL garbage pointer).
*/
if (i >= nsweeps[k]) sweep[k] = NULL;
if (sweep[k]) if (sweep[k]->h.nrays > nrays) nrays = sweep[k]->h.nrays;
}
sweep_num++; /* I guess it will be ok to count NULL sweeps. */
ray_num = 0;
if (radar_verbose_flag)
fprintf(stderr,"Processing sweep %d for %d rays.", i, nrays);
if (radar_verbose_flag)
if (little_endian()) fprintf(stderr," ... On Little endian.\n");
else fprintf(stderr,"\n");
/* Now LOOP for all rays within this particular sweep (i).
* Get all the field types together for the ray, see ray[k], and
* fill the UF data buffer appropriately.
*/
for (j=0; j<nrays; j++) {
memset(uf, 0, sizeof(uf));
nfield = 0;
ray_num++; /* And counting, possibly, NULL rays. */
current_fh_index = 0;
/* Find any ray for header information. It does not matter which
* ray, since the information for the MANDITORY, OPTIONAL, and LOCAL
* USE headers is common to any field type ray.
*/
ray = NULL;
for (k=0; k<nvolumes; k++) {
if (sweep[k])
if (j < sweep[k]->h.nrays)
if (sweep[k]->ray)
if ((ray = sweep[k]->ray[j])) break;
}
/* If there is no such ray, then continue on to the next ray. */
if (ray) {
/*
fprintf(stderr,"Ray: %.4d, Time: %2.2d:%2.2d:%f %.2d/%.2d/%.4d\n", ray_num, ray->h.hour, ray->h.minute, ray->h.sec, ray->h.month, ray->h.day, ray->h.year);
*/
/*
* ---- Begining of MANDITORY HEADER BLOCK.
*/
uf_ma = uf;
memcpy(&uf_ma[0], "UF", 2);
if (little_endian()) memcpy(&uf_ma[0], "FU", 2);
uf_ma[1] = 0; /* Not known yet. */
uf_ma[2] = 0; /* Not known yet. Really, I do. */
uf_ma[3] = 0; /* Not known yet. */
uf_ma[4] = 0; /* Not known yet. */
uf_ma[6] = 1;
uf_ma[7] = ray_num;
uf_ma[8 ] = 1;
uf_ma[9 ] = sweep_num;
memcpy(&uf_ma[10], r->h.radar_name, 8);
if (little_endian()) swap2(&uf_ma[10], 8/2);
memcpy(&uf_ma[14], r->h.name, 8);
if (little_endian()) swap2(&uf_ma[14], 8/2);
/* Convert decimal lat/lon to d:m:s */
if (ray->h.lat != 0.0) {
degree = (int)ray->h.lat;
minute = (int)((ray->h.lat - degree) * 60);
second = (ray->h.lat - degree - minute/60.0) * 3600.0;
} else {
degree = r->h.latd;
minute = r->h.latm;
second = r->h.lats;
}
uf_ma[18] = degree;
uf_ma[19] = minute;
if (second > 0.0) uf_ma[20] = second*64 + 0.5;
else uf_ma[20] = second*64 - 0.5;
if (ray->h.lon != 0.0) {
degree = (int)ray->h.lon;
minute = (int)((ray->h.lon - degree) * 60);
second = (ray->h.lon - degree - minute/60.0) * 3600.0;
} else {
degree = r->h.lond;
minute = r->h.lonm;
second = r->h.lons;
}
uf_ma[21] = degree;
uf_ma[22] = minute;
if (second > 0.0) uf_ma[23] = second*64 + 0.5;
else uf_ma[23] = second*64 - 0.5;
if (ray->h.alt != 0)
uf_ma[24] = ray->h.alt;
else
uf_ma[24] = r->h.height;
uf_ma[25] = ray->h.year % 100; /* By definition: not year 2000 compliant. */
uf_ma[26] = ray->h.month;
uf_ma[27] = ray->h.day;
uf_ma[28] = ray->h.hour;
uf_ma[29] = ray->h.minute;
uf_ma[30] = ray->h.sec;
memcpy(&uf_ma[31], "UT", 2);
if (little_endian()) memcpy(&uf_ma[31], "TU", 2);
if (ray->h.azimuth > 0) uf_ma[32] = ray->h.azimuth*64 + 0.5;
else uf_ma[32] = ray->h.azimuth*64 - 0.5;
uf_ma[33] = ray->h.elev*64 + 0.5;
uf_ma[34] = uf_sweep_mode;
if (ray->h.fix_angle != 0.)
uf_ma[35] = ray->h.fix_angle*64.0 + 0.5;
else uf_ma[35] = sweep[k]->h.elev*64.0 + 0.5;
uf_ma[36] = ray->h.sweep_rate*(360.0/60.0)*64.0 + 0.5;
the_time = time(NULL);
tm = gmtime(&the_time);
uf_ma[37] = tm->tm_year % 100; /* Same format as data year */
uf_ma[38] = tm->tm_mon+1;
uf_ma[39] = tm->tm_mday;
memcpy(&uf_ma[40], "RSL" VERSION, 8);
if (little_endian()) swap2(&uf_ma[40], 8/2);
uf_ma[44] = (signed short)UF_NO_DATA;
len_ma = 45;
uf_ma[2] = len_ma+1;
/*
* ---- End of MANDITORY HEADER BLOCK.
*/
/* ---- Begining of OPTIONAL HEADER BLOCK. */
len_op = 0;
if (q_op) {
q_op = 0; /* Only once. */
uf_op = uf+len_ma;
memcpy(&uf_op[0], "TRMMGVUF", 8);
if (little_endian()) swap2(&uf_op[0], 8/2);
uf_op[4] = (signed short)UF_NO_DATA;
uf_op[5] = (signed short)UF_NO_DATA;
uf_op[6] = ray->h.hour;
uf_op[7] = ray->h.minute;
uf_op[8] = ray->h.sec;
memcpy(&uf_op[9], "RADAR_UF", 8);
if (little_endian()) swap2(&uf_op[9], 8/2);
uf_op[13] = 2;
len_op = 14;
}
/* ---- End of OPTIONAL HEADER BLOCK. */
/* ---- Begining of LOCAL USE HEADER BLOCK. */
q_lu = 0;
/* TODO: Code within "#ifdef LUHDR_VR_AZ" below should be removed
* once testing of merge_split_cuts is completed.
*/
/* 5/18/2010 Temporarily define LUHDR_VR_AZ until merge_split_cuts is
completed. */
#define LUHDR_VR_AZ
#ifdef LUHDR_VR_AZ
/* If DZ and VR azimuths are different, store VR azimuth in Local Use
* Header. This is done for WSR-88D split cuts.
*/
if (sweep[DZ_INDEX] && sweep[VR_INDEX]) {
if (sweep[DZ_INDEX]->ray[j] && sweep[VR_INDEX]->ray[j]) {
vr_az = sweep[VR_INDEX]->ray[j]->h.azimuth;
if (sweep[DZ_INDEX]->ray[j]->h.azimuth != vr_az)
q_lu = 1; /* Set to use Local Use Header block. */
}
}
#endif
len_lu = 0;
if (q_lu) {
/* Store azimuth for WSR-88D VR ray in Local Use Header. */
uf_lu = uf+len_ma+len_op;
memcpy(&uf_lu[0], "AZ", 2);
if (little_endian()) memcpy(&uf_lu[0], "ZA", 2);
if (vr_az > 0) uf_lu[1] = vr_az*64 + 0.5;
else uf_lu[1] = vr_az*64 - 0.5;
len_lu = 2;
}
/* ---- End of LOCAL USE HEADER BLOCK. */
/* Here is where we loop on each field type. We need to keep
* track of how many FIELD HEADER and FIELD DATA sections, one
* for each field type, we fill. The variable that tracks this
* index into 'uf' is 'current_fh_index'. It is bumped by
* the length of the FIELD HEADER and FIELD DATA for each field
* type encountered. Field types expected are: Reflectivity,
* Velocity, and Spectrum width; this is a typicial list but it
* is not restricted to it.
*/
for (k=0; k<nvolumes; k++) {
if (sweep[k])
if (j < sweep[k]->h.nrays && sweep[k]->ray[j])
ray = sweep[k]->ray[j];
else
ray = NULL;
else ray = NULL;
if (ray) {
/* ---- Begining of DATA HEADER. */
nfield++;
if (q_dh) {
len_dh = 2*true_nvolumes + 3;
uf_dh = uf+len_ma+len_op+len_lu;
uf_dh[0] = nfield;
uf_dh[1] = 1;
uf_dh[2] = nfield;
/* 'nfield' indexes the field number.
* 'k' indexes the particular field from the volume.
* RSL_ftype contains field names and is defined in rsl.h.
*/
if (k > max_field_names-1) {
fprintf(stderr,
"RSL_uf_to_radar: No field name for volume index %d\n", k);
fprintf(stderr,"RSL_ftype must be updated in rsl.h for new field.\n");
fprintf(stderr,"Quitting now.\n");
return;
}
memcpy(&uf_dh[3+2*(nfield-1)], RSL_ftype[k], 2);
if (little_endian()) swap2(&uf_dh[3+2*(nfield-1)], 2/2);
if (current_fh_index == 0) current_fh_index = len_ma+len_op+len_lu+len_dh;
uf_dh[4+2*(nfield-1)] = current_fh_index + 1;
}
/* ---- End of DATA HEADER. */
/* ---- Begining of FIELD HEADER. */
if (q_fh) {
uf_fh = uf+current_fh_index;
if (k != PH_INDEX) scale_factor = 100;
else scale_factor = 10;
uf_fh[1] = scale_factor;
uf_fh[2] = ray->h.range_bin1/1000.0;
uf_fh[3] = ray->h.range_bin1 - (1000*uf_fh[2]);
uf_fh[4] = ray->h.gate_size;
uf_fh[5] = ray->h.nbins;
uf_fh[6] = ray->h.pulse_width*(RSL_SPEED_OF_LIGHT/1.0e6);
uf_fh[7] = sweep[k]->h.beam_width*64.0 + 0.5;
uf_fh[8] = sweep[k]->h.beam_width*64.0 + 0.5;
uf_fh[9] = ray->h.frequency*64.0 + 0.5; /* Bandwidth (mHz). */
uf_fh[10] = 0; /* Horizontal polarization. */
uf_fh[11] = ray->h.wavelength*64.0*100.0; /* m to cm. */
uf_fh[12] = ray->h.pulse_count;
memcpy(&uf_fh[13], " ", 2);
uf_fh[14] = (signed short)UF_NO_DATA;
uf_fh[15] = (signed short)UF_NO_DATA;
if (k == DZ_INDEX || k == ZT_INDEX) {
uf_fh[16] = volume[k]->h.calibr_const*100.0 + 0.5;
}
else {
memcpy(&uf_fh[16], " ", 2);
}
if (ray->h.prf != 0)
uf_fh[17] = 1.0/ray->h.prf*1000000.0; /* Pulse repetition time(msec) = 1/prf */
else
uf_fh[17] = (signed short)UF_NO_DATA; /* Pulse repetition time = 1/prf */
uf_fh[18] = 16;
if (VR_INDEX == k || VE_INDEX == k) {
uf_fh[19] = scale_factor*ray->h.nyq_vel;
uf_fh[20] = 1;
len_fh = 21;
} else {
len_fh = 19;
}
uf_fh[0] = current_fh_index + len_fh + 1;
/* ---- End of FIELD HEADER. */
/* ---- Begining of FIELD DATA. */
uf_data = uf+len_fh+current_fh_index;
len_data = ray->h.nbins;
for (m=0; m<len_data; m++) {
x = ray->h.f(ray->range[m]);
if (x == BADVAL || x == RFVAL || x == APFLAG || x == NOECHO)
uf_data[m] = (signed short)UF_NO_DATA;
else
uf_data[m] = scale_factor * x;
}
current_fh_index += (len_fh+len_data);
}
}
/* ---- End of FIELD DATA. */
}
/* Fill in some infomation we didn't know. Like, buffer length,
* record number, etc.
*/
rec_num++;
uf_ma[1] = current_fh_index;
uf_ma[3] = len_ma + len_op + 1;
uf_ma[4] = len_ma + len_op + len_lu + 1;
uf_ma[5] = rec_num;
/* WRITE the UF buffer. */
rec_len =(int)uf_ma[1]*2;
save_rec_len = rec_len; /* We destroy 'rec_len' when making it
big endian on a little endian machine. */
if (little_endian()) swap_4_bytes(&rec_len);
(void)fwrite(&rec_len, sizeof(int), 1, fp);
if (little_endian()) swap_uf_buffer(uf);
(void)fwrite(uf, sizeof(char), save_rec_len, fp);
(void)fwrite(&rec_len, sizeof(int), 1, fp);
} /* if (ray) */
}
}
}
/**********************************************************************/
/* */
/* RSL_radar_to_uf */
/* */
/**********************************************************************/
void RSL_radar_to_uf(Radar *r, char *outfile)
{
FILE *fp;
if (r == NULL) {
fprintf(stderr, "radar_to_uf: radar pointer NULL\n");
return;
}
if ((fp = fopen(outfile, "w")) == NULL) {
perror(outfile);
return;
}
RSL_radar_to_uf_fp(r, fp);
fclose(fp);
}
/**********************************************************************/
/* */
/* RSL_radar_to_uf_gzip */
/* */
/**********************************************************************/
void RSL_radar_to_uf_gzip(Radar *r, char *outfile)
{
FILE *fp;
if (r == NULL) {
fprintf(stderr, "radar_to_uf_gzip: radar pointer NULL\n");
return;
}
if ((fp = fopen(outfile, "w")) == NULL) {
perror(outfile);
return;
}
fp = compress_pipe(fp);
RSL_radar_to_uf_fp(r, fp);
rsl_pclose(fp);
}
|