1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
use core::num::Wrapping;
use core::{f32, f64};
use core::{i128, i16, i32, i64, i8, isize};
use core::{u128, u16, u32, u64, u8, usize};
/// Numbers which have upper and lower bounds
pub trait Bounded {
// FIXME (#5527): These should be associated constants
/// Returns the smallest finite number this type can represent
fn min_value() -> Self;
/// Returns the largest finite number this type can represent
fn max_value() -> Self;
}
/// Numbers which have lower bounds
pub trait LowerBounded {
/// Returns the smallest finite number this type can represent
fn min_value() -> Self;
}
// FIXME: With a major version bump, this should be a supertrait instead
impl<T: Bounded> LowerBounded for T {
fn min_value() -> T {
Bounded::min_value()
}
}
/// Numbers which have upper bounds
pub trait UpperBounded {
/// Returns the largest finite number this type can represent
fn max_value() -> Self;
}
// FIXME: With a major version bump, this should be a supertrait instead
impl<T: Bounded> UpperBounded for T {
fn max_value() -> T {
Bounded::max_value()
}
}
macro_rules! bounded_impl {
($t:ty, $min:expr, $max:expr) => {
impl Bounded for $t {
#[inline]
fn min_value() -> $t {
$min
}
#[inline]
fn max_value() -> $t {
$max
}
}
};
}
bounded_impl!(usize, usize::MIN, usize::MAX);
bounded_impl!(u8, u8::MIN, u8::MAX);
bounded_impl!(u16, u16::MIN, u16::MAX);
bounded_impl!(u32, u32::MIN, u32::MAX);
bounded_impl!(u64, u64::MIN, u64::MAX);
bounded_impl!(u128, u128::MIN, u128::MAX);
bounded_impl!(isize, isize::MIN, isize::MAX);
bounded_impl!(i8, i8::MIN, i8::MAX);
bounded_impl!(i16, i16::MIN, i16::MAX);
bounded_impl!(i32, i32::MIN, i32::MAX);
bounded_impl!(i64, i64::MIN, i64::MAX);
bounded_impl!(i128, i128::MIN, i128::MAX);
impl<T: Bounded> Bounded for Wrapping<T> {
fn min_value() -> Self {
Wrapping(T::min_value())
}
fn max_value() -> Self {
Wrapping(T::max_value())
}
}
bounded_impl!(f32, f32::MIN, f32::MAX);
macro_rules! for_each_tuple_ {
( $m:ident !! ) => (
$m! { }
);
( $m:ident !! $h:ident, $($t:ident,)* ) => (
$m! { $h $($t)* }
for_each_tuple_! { $m !! $($t,)* }
);
}
macro_rules! for_each_tuple {
($m:ident) => {
for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
};
}
macro_rules! bounded_tuple {
( $($name:ident)* ) => (
impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
#[inline]
fn min_value() -> Self {
($($name::min_value(),)*)
}
#[inline]
fn max_value() -> Self {
($($name::max_value(),)*)
}
}
);
}
for_each_tuple!(bounded_tuple);
bounded_impl!(f64, f64::MIN, f64::MAX);
#[test]
fn wrapping_bounded() {
macro_rules! test_wrapping_bounded {
($($t:ty)+) => {
$(
assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
)+
};
}
test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn wrapping_bounded_i128() {
macro_rules! test_wrapping_bounded {
($($t:ty)+) => {
$(
assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
)+
};
}
test_wrapping_bounded!(u128 i128);
}
#[test]
fn wrapping_is_bounded() {
fn require_bounded<T: Bounded>(_: &T) {}
require_bounded(&Wrapping(42_u32));
require_bounded(&Wrapping(-42));
}
|