1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
//Copyright (c) 2019 Ultimaker B.V.
//libSavitar is released under the terms of the AGPLv3 or higher.
#include "../src/MeshData.h"
#include <array>
#include <fstream>
#include <gtest/gtest.h>
#include <iostream>
#include <iterator>
#include <string>
#include "../pugixml/src/pugixml.hpp"
namespace Savitar
{
constexpr int NUM_COORDS = 12;
constexpr int NUM_INDICES = 6;
const std::array<float, NUM_COORDS> vertices =
{
2.f, 2.f, -1.f,
4.f, 2.f, 1.f,
4.f, 4.f, -1.f,
2.f, 4.f, 1.f
};
const std::array<int, NUM_INDICES> faces =
{
0, 1, 2,
2, 1, 3
};
/*
* Fixture with some settings and testing mesh data to test with.
*/
class MeshDataTest : public testing::Test
{
public:
const uint8_t* vertex_bytes;
const uint8_t* face_bytes;
pugi::xml_node node;
MeshData* mesh_data;
void SetUp()
{
mesh_data = new MeshData();
vertex_bytes = reinterpret_cast<const uint8_t*>(vertices.data());
face_bytes = reinterpret_cast<const uint8_t*>(faces.data());
std::vector<uint8_t> vertex_vector;
for (int i_byte = 0; i_byte < NUM_COORDS * sizeof(float); ++i_byte)
{
vertex_vector.push_back(vertex_bytes[i_byte]);
}
std::vector<uint8_t> face_vector;
for (int i_byte = 0; i_byte < NUM_INDICES * sizeof(int); ++i_byte)
{
face_vector.push_back(face_bytes[i_byte]);
}
mesh_data->setVerticesFromBytes(vertex_vector);
mesh_data->setFacesFromBytes(face_vector);
}
void TearDown()
{
delete mesh_data;
}
};
TEST_F(MeshDataTest, toXmlNode)
{
pugi::xml_document document;
node = document.append_child("mesh");
mesh_data->toXmlNode(node);
pugi::xml_node vertices_node = node.child("vertices");
ASSERT_TRUE(vertices_node);
ASSERT_FALSE(vertices_node.next_sibling("vertices"));
int i_coord = 0;
for (pugi::xml_node vertex_node : vertices_node.children("vertex"))
{
EXPECT_LT(i_coord, NUM_COORDS);
pugi::xml_attribute x_attr = vertex_node.attribute("x");
pugi::xml_attribute y_attr = vertex_node.attribute("y");
pugi::xml_attribute z_attr = vertex_node.attribute("z");
EXPECT_TRUE(x_attr);
EXPECT_TRUE(y_attr);
EXPECT_TRUE(z_attr);
float x, y, z;
EXPECT_NO_THROW(x = x_attr.as_float());
EXPECT_NO_THROW(y = y_attr.as_float());
EXPECT_NO_THROW(z = z_attr.as_float());
EXPECT_EQ(x, vertices[i_coord]);
EXPECT_EQ(y, vertices[i_coord + 1]);
EXPECT_EQ(z, vertices[i_coord + 2]);
i_coord += 3;
}
EXPECT_EQ(i_coord, NUM_COORDS);
pugi::xml_node triangles_node = node.child("triangles");
ASSERT_TRUE(triangles_node);
EXPECT_FALSE(triangles_node.next_sibling("triangles"));
int i_poly = 0;
for (pugi::xml_node vertex_node : triangles_node.children("triangle"))
{
EXPECT_LT(i_poly, NUM_INDICES);
pugi::xml_attribute v1_attr = vertex_node.attribute("v1");
pugi::xml_attribute v2_attr = vertex_node.attribute("v2");
pugi::xml_attribute v3_attr = vertex_node.attribute("v3");
EXPECT_TRUE(v1_attr);
EXPECT_TRUE(v2_attr);
EXPECT_TRUE(v3_attr);
int v1, v2, v3;
EXPECT_NO_THROW(v1 = v1_attr.as_int());
EXPECT_NO_THROW(v2 = v2_attr.as_int());
EXPECT_NO_THROW(v3 = v3_attr.as_int());
EXPECT_EQ(v1, faces[i_poly]);
EXPECT_EQ(v2, faces[i_poly + 1]);
EXPECT_EQ(v3, faces[i_poly + 2]);
i_poly += 3;
}
EXPECT_EQ(i_poly, NUM_INDICES);
mesh_data->clear();
}
TEST_F(MeshDataTest, fromXmlNode)
{
pugi::xml_document document;
node = document.append_child("mesh");
mesh_data->toXmlNode(node);
mesh_data->clear();
mesh_data->fillByXMLNode(node);
const bytearray got_vertex_bytes = mesh_data->getVerticesAsBytes();
ASSERT_EQ(got_vertex_bytes.size(), sizeof(float) * vertices.size());
int i_vertex_byte = -1;
for (const uint8_t& byte : got_vertex_bytes)
{
EXPECT_EQ(byte, vertex_bytes[++i_vertex_byte]);
}
const bytearray got_face_bytes = mesh_data->getFacesAsBytes();
ASSERT_EQ(got_face_bytes.size(), sizeof(int) * faces.size());
int i_face_byte = -1;
for (const uint8_t& byte : got_face_bytes)
{
EXPECT_EQ(byte, face_bytes[++i_face_byte]);
}
}
} // namespace Savitar
|