File: wt_algorithm.hpp

package info (click to toggle)
libsdsl 2.0.3-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 7,204 kB
  • ctags: 12,713
  • sloc: cpp: 64,225; python: 3,856; ansic: 3,651; makefile: 1,537; sh: 449
file content (600 lines) | stat: -rw-r--r-- 21,722 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#ifndef INCLUDED_SDSL_WT_ALGORITHM
#define INCLUDED_SDSL_WT_ALGORITHM

#include <algorithm>
#include <utility>

namespace sdsl
{

template<typename t_wt>
struct has_interval_symbols;

template<typename t_wt, bool t_has_interval_symbols>
struct _interval_symbols_wt;

template<typename, typename T>
struct has_expand;

//! Intersection of elements in WT[s_0,e_0], WT[s_1,e_1],...,WT[s_k,e_k]
/*! \param wt     The wavelet tree object.
 *  \param ranges The ranges.
 *  \param t      Threshold in how many distinct ranges the value has to be
 *                present. Default: t=ranges.size()
 *  \return       A vector containing (value, frequency) - of value which are
 *                contained in t different ranges. Frequency = accumulated
 *                frequencies in all ranges. The tuples are ordered according
 *                to value, if t_wt::lex_ordered=1.
 */
template<class t_wt>
std::vector< std::pair<typename t_wt::value_type, typename t_wt::size_type> >
intersect(const t_wt& wt, const std::vector<range_type>& ranges, typename t_wt::size_type t=0)
{
    using std::get;
    using size_type      = typename t_wt::size_type;
    using value_type     = typename t_wt::value_type;
    using node_type      = typename t_wt::node_type;
    using pnvr_type      = std::pair<node_type, range_vec_type>;
    typedef std::stack<pnvr_type> stack_type;

    static_assert(has_expand<t_wt, std::pair<node_type,node_type>(const node_type&)>::value,
                  "intersect requires t_wt to have expand(const node_type&)");

    using p_t = std::pair<value_type,size_type>;
    std::vector<p_t> res;

    auto push_node = [&wt,&t](stack_type& s, node_type& child,
    range_vec_type& child_range) {
        auto end = std::remove_if(child_range.begin(), child_range.end(),
        [&](const range_type& x) { return empty(x);});
        if (end > child_range.begin() + t - 1) {
            s.emplace(pnvr_type(child, range_vec_type(child_range.begin(),
                                end)));
        }
    };

    if (ranges.empty())
        return res;

    t = (t==0) ? ranges.size() : t;

    std::stack<pnvr_type> stack;
    stack.emplace(pnvr_type(wt.root(), ranges));

    while (!stack.empty()) {
        pnvr_type x = stack.top(); stack.pop();

        if (wt.is_leaf(x.first)) {
            const auto& iv = x.second;
            if (t <= iv.size()) {
                auto freq = std::accumulate(iv.begin(), iv.end(), 0ULL,
                [](size_type acc, const range_type& r) {
                    return acc+(r.second-r.first+1);
                });
                res.emplace_back(wt.sym(x.first),freq);
            }
        } else {
            auto child        = wt.expand(x.first);
            auto child_ranges = wt.expand(x.first, x.second);

            push_node(stack, get<1>(child), get<1>(child_ranges));
            push_node(stack, get<0>(child), get<0>(child_ranges));
        }
    }
    return res;
}


//! Returns the q-th smallest element and its frequency in wt[lb..rb].
/*! \param wt The wavelet tree.
 *  \param lb Left array bound in T
 *  \param rb Right array bound in T
 *  \param q q-th largest element ('quantile'), 0-based indexed.
 */
template<class t_wt>
std::pair<typename t_wt::value_type, typename t_wt::size_type>
quantile_freq(const t_wt& wt, typename t_wt::size_type lb,
              typename t_wt::size_type rb, typename t_wt::size_type q)
{
    static_assert(t_wt::lex_ordered,
                  "quantile_freq requires a lex_ordered WT");
    using std::get;
    using node_type      = typename t_wt::node_type;
    static_assert(has_expand<t_wt, std::pair<node_type,node_type>(const node_type&)>::value,
                  "quantile_freq requires t_wt to have expand(const node_type&)");

    node_type v = wt.root();
    range_type r(lb,rb);

    while (!wt.is_leaf(v)) {
        auto child        = wt.expand(v);
        auto child_ranges = wt.expand(v, r);
        auto num_zeros    = size(get<0>(child_ranges));

        if (q >= num_zeros) {
            q -= num_zeros;
            v = get<1>(child);
            r = get<1>(child_ranges);
        } else {
            v = get<0>(child);
            r = get<0>(child_ranges);
        }
    }
    return {wt.sym(v), size(r)};
};


template<class t_wt>
void
_interval_symbols_rec(const t_wt& wt, range_type r,
                      typename t_wt::size_type& k,
                      std::vector<typename t_wt::value_type>& cs,
                      std::vector<typename t_wt::size_type>& rank_c_i,
                      std::vector<typename t_wt::size_type>& rank_c_j,
                      const typename t_wt::node_type& v)
{
    using std::get;
    if (wt.is_leaf(v)) {
        rank_c_i[k] = r.first;
        rank_c_j[k] = r.second+1;
        cs[k++] = wt.sym(v);
    } else {
        auto child        = wt.expand(v);
        auto child_ranges = wt.expand(v, r);
        if (!empty(get<0>(child_ranges))) {
            _interval_symbols_rec(wt, get<0>(child_ranges), k, cs, rank_c_i,
                                  rank_c_j, get<0>(child));
        }
        if (!empty(get<1>(child_ranges))) {
            _interval_symbols_rec(wt, get<1>(child_ranges), k, cs, rank_c_i,
                                  rank_c_j, get<1>(child));
        }
    }
}

template<class t_wt>
void
_interval_symbols(const t_wt& wt, typename t_wt::size_type i,
                  typename t_wt::size_type j,
                  typename t_wt::size_type& k,
                  std::vector<typename t_wt::value_type>& cs,
                  std::vector<typename t_wt::size_type>& rank_c_i,
                  std::vector<typename t_wt::size_type>& rank_c_j)
{

    assert(i <= j and j <= wt.size());
    k=0;
    if ((i+1)==j) {
        auto res = wt.inverse_select(i);
        cs[0]=res.second;
        rank_c_i[0]=res.first;
        rank_c_j[0]=res.first+1;
        k=1;
        return;
    } else if (j>i) {
        _interval_symbols_rec(wt, range_type(i,j-1), k, cs,
                              rank_c_i, rank_c_j, wt.root());
    }
}

//! For each symbol c in wt[i..j-1] get rank(i,c) and rank(j,c).
/*!
 * \param i        The start index (inclusive) of the interval.
 * \param j        The end index (exclusive) of the interval.
 * \param k        Reference for number of different symbols in [i..j-1].
 * \param cs       Reference to a vector that will contain in
 *                 cs[0..k-1] all symbols that occur in [i..j-1] in
 *                 ascending order.
 * \param rank_c_i Reference to a vector which equals
 *                 rank_c_i[p] = rank(i,cs[p]), for \f$ 0 \leq p < k \f$.
 * \param rank_c_j Reference to a vector which equals
 *                 rank_c_j[p] = rank(j,cs[p]), for \f$ 0 \leq p < k \f$.
 * \par Time complexity
 *      \f$ \Order{\min{\sigma, k \log \sigma}} \f$
 *
 * \par Precondition
 *      \f$ i \leq j \leq size() \f$
 *      \f$ cs.size() \geq \sigma \f$
 *      \f$ rank_{c_i}.size() \geq \sigma \f$
 *      \f$ rank_{c_j}.size() \geq \sigma \f$
 */
template<class t_wt>
void
interval_symbols(const t_wt& wt, typename t_wt::size_type i,
                 typename t_wt::size_type j,
                 typename t_wt::size_type& k,
                 std::vector<typename t_wt::value_type>& cs,
                 std::vector<typename t_wt::size_type>& rank_c_i,
                 std::vector<typename t_wt::size_type>& rank_c_j)
{
    // check if wt has a built-in interval_symbols method
    constexpr bool has_own = has_interval_symbols<t_wt>::value;
    if (has_own) {  // if yes, call it
        _interval_symbols_wt<t_wt, has_own>::call(wt, i, j, k,
                cs, rank_c_i, rank_c_j);
    } else { // otherwise use generic implementation based on expand
        _interval_symbols(wt, i,j, k, cs, rank_c_i, rank_c_j);
    }
}



// has_interval_symbols<X>::value is true if class X has
// implement method interval_symbols
// Adapted solution from jrok's proposal:
// http://stackoverflow.com/questions/87372/check-if-a-class-has-a-member-function-of-a-given-signature
template<typename t_wt>
struct has_interval_symbols {
    template<typename T>
    static constexpr auto check(T*)
    -> typename
    std::is_same<
    decltype(std::declval<T>().interval_symbols(
                 std::declval<typename T::size_type>(),
                 std::declval<typename T::size_type>(),
                 std::declval<typename T::size_type&>(),
                 std::declval<std::vector<typename T::value_type>&>(),
                 std::declval<std::vector<typename T::size_type>&>(),
                 std::declval<std::vector<typename T::size_type>&>()
             )),
             void>::type {return std::true_type();}
             template<typename>
    static constexpr std::false_type check(...) {return std::false_type();}
    typedef decltype(check<t_wt>(nullptr)) type;
    static constexpr bool value = type::value;
};

template<typename t_wt, bool t_has_interval_symbols>
struct _interval_symbols_wt {
    typedef typename t_wt::size_type  size_type;
    typedef typename t_wt::value_type value_type;

    static void call(const t_wt& wt, size_type i, size_type j, size_type& k,
                     std::vector<value_type>& cs, std::vector<size_type>& rank_c_i,
                     std::vector<size_type>& rank_c_j) {
        wt.interval_symbols(i,j,k,cs,rank_c_i,rank_c_j);
    }
};


template<typename t_wt>
struct _interval_symbols_wt<t_wt, false> {
    typedef typename t_wt::size_type  size_type;
    typedef typename t_wt::value_type value_type;

    static void call(const t_wt&, size_type, size_type, size_type&,
                     std::vector<value_type>&, std::vector<size_type>&,
                     std::vector<size_type>&) {
    }
};

template<typename, typename T>
struct has_expand {
    static_assert(std::integral_constant<T, false>::value,
                  "Second template parameter needs to be of function type.");
};

template<typename t_wt, typename t_ret, typename... t_args>
struct has_expand<t_wt, t_ret(t_args...)> {
    template<typename T>
    static constexpr auto check(T*)
    -> typename
    std::is_same<
    decltype(std::declval<T>().expand(std::declval<t_args>()...)),
    t_ret>::type { return std::true_type();}
    template<typename>
static constexpr std::false_type check(...) { return std::false_type();}
typedef decltype(check<t_wt>(nullptr)) type;
static constexpr bool value = type::value;
};

template<typename t_wt>
struct has_range_search_2d {
    template<typename T>
    static constexpr auto check(T*)
    -> typename
    std::is_same<
    decltype(std::declval<T>().range_search_2d(//
                 std::declval<typename T::size_type>(),
                 std::declval<typename T::size_type>(),
                 std::declval<typename T::value_type>(),
                 std::declval<typename T::value_type>(),
                 false
             )),
             std::pair<typename T::size_type,
             std::vector<std::pair<typename T::value_type,
             typename T::size_type>>>>::type {return std::true_type();}

             template<typename>
    static constexpr std::false_type check(...) {return std::false_type();}
    typedef decltype(check<t_wt>(nullptr)) type;
    static constexpr bool value = type::value;
};


//! Returns for a symbol c the previous smaller or equal symbol in the WT.
/*! \param c the symbol
 *  \return A pair. The first element of the pair consititues if
 *          a valid answer was found (true) or no valid answer (false)
 *          could be found. The second element contains the found symbol.
 */
template<class t_wt>
std::pair<bool,typename t_wt::value_type>
_symbol_lte(const t_wt& wt,typename t_wt::value_type c)
{
    if (((1ULL) << (wt.max_level)) <= c) {
        // c is greater than any symbol in wt. return the largest symbol!
        c = sdsl::bits::lo_set[wt.max_level];
    }
    auto node = wt.root();
    auto predecessor_subtree = node;
    uint64_t mask = (1ULL) << (wt.max_level - 1);
    while (!wt.is_leaf(node)) {
        auto children = wt.expand(node);
        auto left_child = std::get<0>(children);
        auto right_child = std::get<1>(children);
        if (c & (mask >> node.level)) { // go right
            if (right_child.size) {
                node = right_child;
                if (left_child.size) { // potential predecessor subtree?
                    predecessor_subtree = left_child;
                }
            } else { // dead end
                // left child can't be empty if left child is
                node = left_child;
                c = sdsl::bits::all_set;
            }
        } else { // go left
            if (left_child.size) {
                node = left_child;
            } else { // dead end
                if (predecessor_subtree == wt.root()) {
                    // there is no valid predecessor. symbol must be
                    // smaller than the smallest symbol in the wt.
                    return {false, 0};
                }
                node = predecessor_subtree;
                c = sdsl::bits::all_set;
            }
        }
    }
    return {true, node.sym};
}


//! Returns for a symbol c the next larger or equal symbol in the WT.
/*! \param c the symbol
 *  \return A pair. The first element of the pair consititues if
 *          a valid answer was found (true) or no valid answer (false)
 *          could be found. The second element contains the found symbol.
 */
template<class t_wt>
std::pair<bool,typename t_wt::value_type>
_symbol_gte(const t_wt& wt,typename t_wt::value_type c)
{
    if (((1ULL) << (wt.max_level)) <= c) {
        // c is greater than any symbol in wt
        return {false, 0};
    }
    auto node = wt.root();
    auto successor_subtree = node;
    uint64_t mask = (1ULL) << (wt.max_level - 1);
    while (!wt.is_leaf(node)) {
        auto children = wt.expand(node);
        auto left_child = std::get<0>(children);
        auto right_child = std::get<1>(children);
        if (c & (mask >> node.level)) { // go right
            if (right_child.size) {
                node = right_child;
            } else { // dead end
                if (successor_subtree == wt.root()) {
                    // there is no valid successor. symbol must be
                    // bigger than the largest symbol in the wt.
                    return {false, 0};
                }
                node = successor_subtree;
                c = 0;
            }
        } else { // go left
            if (left_child.size) {
                node = left_child;
                if (right_child.size) { // potential successor subtree?
                    successor_subtree = right_child;
                }
            } else { // dead end
                // right child can't be empty if left child is
                node = right_child;
                c = 0;
            }
        }
    }
    return {true, node.sym};
}

template<class t_wt, bool t_has_interval_symbols>
struct _symbols_calls_wt {
    typedef typename t_wt::value_type value_type;

    static std::pair<bool, value_type>
    call_symbol_gte(const t_wt& wt,value_type c) {
        return wt.symbol_gte(c);
    }

    static std::pair<bool,value_type>
    call_symbol_lte(const t_wt& wt,value_type c) {
        return wt.symbol_lte(c);
    }
};


template<class t_wt>
struct _symbols_calls_wt<t_wt, false> {
    typedef typename t_wt::value_type value_type;

    static std::pair<bool,value_type>
    call_symbol_gte(const t_wt& wt,value_type c) {
        return _symbol_gte(wt,c);
    }

    static std::pair<bool,value_type>
    call_symbol_lte(const t_wt& wt,value_type c) {
        return _symbol_lte(wt,c);
    }
};

template<typename t_wt>
struct has_symbols_wt {
    template<typename T>
    static constexpr auto check(T*)
    -> typename
    std::is_same<
    decltype(std::declval<T>().symbol_gte(std::declval<typename T::value_type>())),
             std::pair<bool,typename T::value_type>
             >::type {return std::true_type();}

             template<typename>
    static constexpr std::false_type check(...) {return std::false_type();}
    typedef decltype(check<t_wt>(nullptr)) type;
    static constexpr bool value = type::value;
};

//! Returns for a symbol c the previous smaller or equal symbol in the WT.
/*! \param c the symbol
 *  \return A pair. The first element of the pair consititues if
 *          a valid answer was found (true) or no valid answer (false)
 *          could be found. The second element contains the found symbol.
 */
template<class t_wt>
std::pair<bool,typename t_wt::value_type>
symbol_lte(const t_wt& wt, typename t_wt::value_type c)
{
    static_assert(t_wt::lex_ordered, "symbols_lte requires a lex_ordered WT");
    // check if wt has a built-in interval_symbols method
    constexpr bool has_own = has_symbols_wt<t_wt>::value;
    return _symbols_calls_wt<t_wt, has_own>::call_symbol_lte(wt,c);
}

//! Returns for a symbol c the next larger or equal symbol in the WT.
/*! \param c the symbol
 *  \return A pair. The first element of the pair consititues if
 *          a valid answer was found (true) or no valid answer (false)
 *          could be found. The second element contains the found symbol.
 */
template<class t_wt>
std::pair<bool,typename t_wt::value_type>
symbol_gte(const t_wt& wt, typename t_wt::value_type c)
{
    static_assert(t_wt::lex_ordered, "symbols_gte requires a lex_ordered WT");
    // check if wt has a built-in interval_symbols method
    constexpr bool has_own = has_symbols_wt<t_wt>::value;
    return _symbols_calls_wt<t_wt, has_own>::call_symbol_gte(wt,c);
}

//! Returns for a x range [x_i,x_j] and a value range [y_i,y_j] all unique y
//! values occuring in [x_i,x_j] in ascending order.
/*! \param x_i lower bound of the x range
 *  \param x_j upper bound of the x range
 *  \param y_i lower bound of the y range
 *  \param y_j upper bound of the y range
 *  \return a vector of increasing y values occuring in the range [x_i,x_j]
 */
template <class t_wt>
std::vector<typename t_wt::value_type>
restricted_unique_range_values(const t_wt& wt,
                               typename t_wt::size_type x_i,
                               typename t_wt::size_type x_j,
                               typename t_wt::value_type y_i,
                               typename t_wt::value_type y_j)
{
    static_assert(t_wt::lex_ordered, "restricted_unique_range_values requires a lex_ordered WT");

    std::vector<typename t_wt::value_type> unique_values;

    // make sure things are within bounds
    if( x_j > wt.size()-1 ) x_j = wt.size()-1;
    if( (x_i > x_j) || (y_i > y_j) ) { 
        return unique_values;
    }
    auto lower_y_bound = symbol_gte(wt,y_i);
    auto upper_y_bound = symbol_lte(wt,y_j);
    // is the y range valid?
    if( !lower_y_bound.first || !upper_y_bound.first 
        || (lower_y_bound.second > upper_y_bound.second) )  {
        return unique_values;
    }

    auto lower_y_bound_path = wt.path(lower_y_bound.second);
    auto upper_y_bound_path = wt.path(upper_y_bound.second);

    auto compare_path = [](uint64_t node_path,uint64_t node_path_len,
    std::pair<uint64_t,uint64_t> bound_path) -> int {
        auto bound_path_len = bound_path.first;
        auto bound_path_val = bound_path.second;
        /* align to same length */
        if (bound_path_len > node_path_len)
            bound_path_val = bound_path_val >> (bound_path_len-node_path_len);
        if (bound_path_len < node_path_len)
            bound_path_val = bound_path_val << (node_path_len-bound_path_len);
        /* cmp */
        if (node_path < bound_path_val) return -1;
        if (node_path > bound_path_val) return 1;
        return 0;
    };

    std::stack<std::tuple<typename t_wt::node_type,sdsl::range_type,uint64_t,uint64_t>> stack;
    sdsl::range_type initial_range = {x_i,x_j};
    stack.emplace(wt.root(),initial_range,0,0);
    while (!stack.empty()) {
        auto node_data = stack.top(); stack.pop();
        auto node = std::get<0>(node_data);
        auto range = std::get<1>(node_data);
        auto node_path = std::get<2>(node_data);
        auto node_level = std::get<3>(node_data);
        if (wt.is_leaf(node)) {
            unique_values.emplace_back(wt.sym(node));
        } else {
            auto children = wt.expand(node);
            auto left_path = node_path<<1ULL;
            auto right_path = (node_path<<1ULL)|1ULL;
            auto child_ranges = wt.expand(node,range);
            if (compare_path(right_path,node_level+1,upper_y_bound_path) < 1) {
                auto right_child = std::get<1>(children);
                auto right_range = std::get<1>(child_ranges);
                if (!sdsl::empty(right_range))
                    stack.emplace(right_child,right_range,right_path,node_level+1);
            }
            if (compare_path(left_path,node_level+1,lower_y_bound_path) > -1) {
                auto left_child = std::get<0>(children);
                auto left_range = std::get<0>(child_ranges);
                if (!sdsl::empty(left_range))
                    stack.emplace(left_child,left_range,left_path,node_level+1);
            }
        }
    }

    return unique_values;
}



// Check for node_type of wavelet_tree
// http://stackoverflow.com/questions/7834226/detecting-typedef-at-compile-time-template-metaprogramming

template<typename T>
struct void_ { typedef void type; };

template<typename t_wt, typename T = void>
struct has_node_type {
    static constexpr std::false_type value = std::false_type();
};

template<typename t_wt>
struct has_node_type<t_wt, typename void_<typename t_wt::node_type>::type> {
    static constexpr std::true_type value = std::true_type();
};



} // end namespace

#endif