File: sdsl-cheatsheet.tex

package info (click to toggle)
libsdsl 2.1.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 3,980 kB
  • sloc: cpp: 42,286; makefile: 1,171; ansic: 318; sh: 201; python: 27
file content (783 lines) | stat: -rw-r--r-- 32,410 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
\documentclass[10pt,landscape]{article}
% next two lines required for sdsl command
\usepackage[T1]{fontenc} 
\newcommand{\changefont}[3]{\fontfamily{#1}\fontseries{#2}\fontshape{#3}\selectfont} 
\usepackage{amsfonts}

\usepackage{color}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage[landscape]{geometry}

\usepackage{amsmath} 
\usepackage[colorlinks]{hyperref}
\usepackage{xcolor}


\usepackage{tikz}
\usepackage{endnotes} % see http://tex.stackexchange.com/questions/56145/is-there-a-way-to-move-all-footnotes-to-the-end-of-the-document
\usepackage{hyperendnotes} % see http://tex.stackexchange.com/questions/8452/making-endnotes-clickable-links-with-hyperref
\let\footnote=\endnote

\definecolor{githublink}{HTML}{4183c4}

% TODO: Add header information for classes:
%       Almost done, since abbreviations contain link to header
%

\hypersetup{
bookmarks=true,         % show bookmarks bar?
unicode=false,          % non-Latin characters in Acrobat’s bookmarks
pdftoolbar=true,        % show Acrobat’s toolbar?
pdfmenubar=true,        % show Acrobat’s menu?
pdffitwindow=false,     % window fit to page when opened
pdfstartview={FitH},    % fits the width of the page to the window
pdftitle={sdsl cheat sheet},    % title
pdfauthor={Simon Gog},     % author
pdfsubject={sdsl short reference},   % subject of the document
pdfcreator={Creator},   % creator of the document
pdfproducer={Producer}, % producer of the document
pdfkeywords={keyword1} {key2} {key3}, % list of keywords
pdfnewwindow=true,      % links in new window
colorlinks=true,       % false: boxed links; true: colored links
linkcolor=red,          % color of internal links (change box color with linkbordercolor)
citecolor=green,        % color of links to bibliography
filecolor=magenta,      % color of file links
urlcolor=githublink           % color of external links
}
% link color #4183c4
% To make this come out properly in landscape mode, do one of the following
% 1.
%  pdflatex latexsheet.tex
%
% 2.
%  latex latexsheet.tex
%  dvips -P pdf  -t landscape latexsheet.dvi
%  ps2pdf latexsheet.ps


% If you're reading this, be prepared for confusion.  Making this was
% a learning experience for me, and it shows.  Much of the placement
% was hacked in; if you make it better, let me know...


% 2008-04
% Changed page margin code to use the geometry package. Also added code for
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
% for the suggestions.

% 2006-08
% Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu>


% To Do:
% \listoffigures \listoftables
% \setcounter{secnumdepth}{0}


% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
	{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
	{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
		{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
		{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
	}

% Turn off header and footer
\pagestyle{empty}
 

% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
                                {-1ex plus -.5ex minus -.2ex}%
                                {0.5ex plus .2ex}%x
                                {\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
                                {-1explus -.5ex minus -.2ex}%
                                {0.5ex plus .2ex}%
                                {\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
                                {-1ex plus -.5ex minus -.2ex}%
                                {1ex plus .2ex}%
                                {\normalfont\small\bfseries}}
\makeatother

% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
    T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}

% Don't print section numbers
\setcounter{secnumdepth}{0}


\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}

% -----------------------------------------------------------------------

\DeclareMathOperator*{\argmin}{arg\!\min}

\begin{document}
\newlength{\MyLen}
\newlength{\MidLen}

\raggedright
\footnotesize
\begin{multicols}{3}


% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}

\newcommand{\Order}[1]{\ensuremath{{\mathcal O}(#1)}}


\newcommand{\sdslgit}{https://github.com/simongog/sdsl-lite/blob/master}
\newcommand{\sdslgitinc}{\sdslgit/include/sdsl}
\newcommand{\pizzachili}{http://pizzachili.di.unipi.it/texts.html}
\newcommand{\code}[1]{\texttt{#1}}

%\newcommand{\sdsl}{\ensuremath{\mathit{sdsl}}}
\newcommand{\sdsl}{%
{\changefont{cmss}{bx}{n}\href{\sdslgit}{sdsl}%
}%\changefont{cmr}{m}{n}%
}
%%% int vector representations
\newcommand{\sdslintvector}{\code{int\_vector}}
\newcommand{\sdslintvectorZ}{\code{int\_vector\textless\textgreater}}
\newcommand{\sdslencvector}{\code{enc\_vector}}
\newcommand{\sdslvlcvector}{\code{vlc\_vector}}
\newcommand{\sdsldacvector}{\code{dac\_vector}}
%%% coder 
\newcommand{\sdslcodereliasdelta}{\code{coder::elias\_delta}}
\newcommand{\sdslcodereliasgamma}{\code{coder::elias\_gamma}}
\newcommand{\sdslcoderfibonacci}{\code{coder::fibonacci}}
%%% bit vector representations
\newcommand{\sdslbitvector}{\code{bit\_vector}}
\newcommand{\sdslbitvectoril}{\code{bit\_vector\_il}}
\newcommand{\sdslrrrvector}{\code{rrr\_vector}}
\newcommand{\sdslsdvector}{\code{sd\_vector}}
\newcommand{\sdslhybvector}{\code{hyb\_vector}}
%%%% rank support structures
\newcommand{\sdslranksupportv}{\code{rank\_support\_v}}
\newcommand{\sdslranksupportvV}{\code{rank\_support\_v5}}
\newcommand{\sdslranksupportil}{\code{rank\_support\_il}}
\newcommand{\sdslranksupportrrr}{\code{rank\_support\_rrr}}
\newcommand{\sdslranksupportsd}{\code{rank\_support\_sd}}
\newcommand{\sdslranksupportscan}{\code{rank\_support\_scan}}
\newcommand{\sdslranksupporthyb}{\code{rank\_support\_hyb}}
%%%% select support structures
\newcommand{\sdslselectsupportmcl}{\code{select\_support\_mcl}}
\newcommand{\sdslselectsupportscan}{\code{select\_support\_scan}}
\newcommand{\sdslselectsupportil}{\code{select\_support\_il}}
\newcommand{\sdslselectsupportrrr}{\code{select\_support\_rrr}}
\newcommand{\sdslselectsupportsd}{\code{select\_support\_sd}}
%%%% WTs
\newcommand{\sdslwthuff}{\code{wt\_huff}}
\newcommand{\sdslwthutu}{\code{wt\_hutu}}
\newcommand{\sdslwtblcd}{\code{wt\_blcd}}
\newcommand{\sdslwtint}{\code{wt\_int}}
\newcommand{\sdslwmint}{\code{wm\_int}}
\newcommand{\sdslwtgmr}{\code{wt\_gmr}}
\newcommand{\sdslwtap}{\code{wt\_ap}}
\newcommand{\sdslwtrlmn}{\code{wt\_rlmn}}
%%%% CSAs
\newcommand{\sdslcsabitcompressed}{\code{csa\_bitcompressed}}
\newcommand{\sdslcsasada}{\code{csa\_sada}}
\newcommand{\sdslcsawt}{\code{csa\_wt}}
%%%% Alphabet strategy (policy parametrization see Stroustrup C++ 24.4.1)
\newcommand{\sdslbytealphabetstrategy}{\code{byte\_alphabet}}
\newcommand{\sdslsuccinctbytealphabetstrategy}{\code{succinct\_byte\_alphabet}}
\newcommand{\sdslintalphabetstrategy}{\code{int\_alphabet}}
%%%% Alphabet strategy (policy parametrization see Stroustrup C++ 24.4.1)
\newcommand{\sdslsaordersasampling}{\code{sa\_order\_sa\_sampling}}
\newcommand{\sdsltextordersasampling}{\code{text\_order\_sa\_sampling}}

%%%% LCPs
\newcommand{\sdsllcpbitcompressed}{\code{lcp\_bitcompressed}}
\newcommand{\sdsllcpdac}{\code{lcp\_dac}}
\newcommand{\sdsllcpvlc}{\code{lcp\_vlc}}
\newcommand{\sdsllcpbyte}{\code{lcp\_byte}}
\newcommand{\sdsllcpsupportsada}{\code{lcp\_support\_sada}}
\newcommand{\sdsllcpwt}{\code{lcp\_wt}}
\newcommand{\sdsllcpsupporttree}{\code{lcp\_support\_tree}}
\newcommand{\sdsllcpsupporttreeII}{\code{lcp\_support\_tree2}}
%%%% PBSs
\newcommand{\sdslbpsupportg}{\code{bp\_support\_g}}
\newcommand{\sdslbpsupportgg}{\code{bp\_support\_gg}}
\newcommand{\sdslbpsupportsada}{\code{bp\_support\_sada}}
%%%% CSTs
\newcommand{\sdslcstsada}{\code{cst\_sada}}
\newcommand{\sdslcstsctIII}{\code{cst\_sct3}}
\newcommand{\sdslcstfully}{\code{cst\_fully}}
%%%% RMQs
\newcommand{\sdslrmqsupportsparsetable}{\code{rmq\_support\_sparse\_table}}
\newcommand{\sdslrmqsuccinctsada}{\code{rmq\_succint\_sada}}
\newcommand{\sdslrmqsuccinctsct}{\code{rmq\_succint\_sct}}

\newcommand{\myYES}{$\checkmark$}
\newcommand{\myNO}{$\times$}

\begin{center}
     \Large{\textbf{\sdsl\ Cheat Sheet}} \\
\end{center}

\section{Data structures}
The library code is in the \code{sdsl} namespace. Either import
the namespace in your program (\code{using~namespace~sdsl;}) or
qualify all identifieres by a \code{sdsl::}-prefix.

Each section corresponds to a header file. The file
is hyperlinked as part of the section heading.

We have two types of data structures in \sdsl.
\emph{Self-contained} and \emph{support}
structures. A support object \code{s} can extend
a self-contained object \code{o} (e.g. add functionality), but 
requires access to \code{o}. Support structures contain
the substring \code{support} in their class names.

\subsection{Integer Vectors (\href{\sdslgitinc/vectors.hpp}{IV})}
The core of the library is the class 
\href{\sdslgitinc/int_vector.hpp}{\sdslintvector\textless$w$\textgreater}.
Parameter $w$ corresponds to the fixed length of each
element in bits.  For $w=8,16,32,64,1$ the length is
fixed during compile time and the vectors
correspond to \href{http://www.sgi.com/tech/stl/Vector.html}{\code{std::vector\textless uint$w$\_t\textgreater}}
resp. \code{std::vector<bool>}.
If $w=0$ (default) the length can be set during runtime.
\textit{Constructor:} \sdslintvectorZ\code{($n$,$x$,$\ell$)}, with 
$n$ equals size, $x$ default integer value, $\ell$ width
of integer (has no effect for $w>0$).

\textit{Public~methods:} \code{operator[i]}, \code{size()}, \code{width()}, 
\code{data()}. 

\subsubsection{Manipulating \sdslintvector\textless$w$\textgreater\ \code{v}}
\settowidth{\MyLen}{\code{set\_random\_bits(v)}\quad}
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
\textit{Method}                     & \textit{Description} \\
\code{v[$i$]=$x$}                   & Set entry \code{v[$i$]} to $x$. \\
\code{v.width($\ell$)}	            & Set width to $\ell$, if $w=0$.\\
\code{v.resize($n$)}				& Resize \code{v} to $n$ elements. \\
\multicolumn{2}{@{}l@{}}{Useful methods in namespace \code{sdsl::util}:}	\\
\code{set\_to\_value(v,$k$)} & Set \code{v[$i$]=$k$} for each $i$.\\
\code{set\_to\_id(v)}         & Set \code{v[$i$]=$i$} for each $i$.\\
\code{set\_random\_bits(v)}   & Set elements to random bits. \\
\code{mod(v,$m$)}            & Set \code{v[$i$]=v[$i$]$\bmod m$} for each $i$.\\
\code{bit\_compress(v)}       & Gets \code{$x\!=\!\max_i$v[$i$]} and 
                                      $\ell\!=\!\lceil\log(x\!-\!1)\rceil\!+\!1$  
                                      and packs the entries in $\ell$-bit integers.\\
%									  and call \code{v.width($\ell$)}.\\
\code{expand\_width(v,$\ell$)} & Expands the width of each integer to
										$\ell$ bits, if \code{$\ell\geq$~v.width().}\\
\end{tabular}

\subsubsection{Compressed Integer Vectors (\href{\sdslgitinc/vectors.hpp}{CIV})}
For a vector \code{v}, \href{\sdslgitinc/enc_vector.hpp}{\sdslencvector} stores the
self-delimiting coded deltas (\code{v[$i\!+\!1$]$-$v[$i$]}). Fast random access is
achieved by sampling values of \code{v} at rate \code{t\_dens}. Available coder
are 
\href{\sdslgitinc/coder_elias_delta.hpp}{\sdslcodereliasdelta},
\href{\sdslgitinc/coder_elias_gamma.hpp}{\sdslcodereliasgamma},
and
\href{\sdslgitinc/coder_fibonacci.hpp}{\sdslcoderfibonacci}. 

Class \href{\sdslgitinc/vlc_vector.hpp}{\sdslvlcvector} stores each
\code{v[i]} as self-delimiting codeword. Samples at rate
\code{t\_dens} are inserted for fast random access.

Class \href{\sdslgitinc/dac_vector.hpp}{\sdsldacvector} stores
for each value $x$ the least $(\code{t\_b}-1)$
significant bits 
plus a bit which is set if $x\geq 2^{b-1}$. In the latter case,
the process is repeated with $x'=x/2^{b-1}$.

\subsection{Bitvectors (\href{\sdslgitinc/bit_vectors.hpp}{BV})}
Representations for a bitvector of length $n$ with $m$ set bits.
\begin{tabular}{@{}lll@{}}
\textit{Class}    & \textit{Description}       & \textit{Space}  \\
\href{\sdslgitinc/int_vector.hpp}{\sdslbitvector} & 
plain bitvector            & 64$\lceil n/64\!+\!1\rceil$ \\
\href{\sdslgitinc/bit_vector_il.hpp}{\sdslbitvectoril} &
interleaved  bitvector & $\approx n(1+64/K)$  \\
\href{\sdslgitinc/rrr_vector.hpp}{\sdslrrrvector} & 
$H_0$-compressed bitvector & $\approx \lceil \log {n\choose m} \rceil$ \\
\href{\sdslgitinc/sd_vector.hpp}{\sdslsdvector}  & sparse bitvector
& $\approx\ m\cdot(2\!+\!\log\frac{n}{m})$ \\	
\href{\sdslgitinc/hyb_vector.hpp}{\sdslhybvector} & hybrid bitvector &  \\
\end{tabular}
\sdslbitvector\ equals \sdslintvector\code{\textless1\textgreater} and
is therefore dynamic.\\
\textit{Public Methods:} \code{operator[$i$]}, \code{size()}, \code{begin()}, \code{end()}\\
\textit{Public Types:} \code{rank\_1\_type}, \code{select\_1\_type},
                       \code{select\_0\_type}\footnote{\code{select\_0\_type} not defined for \sdslsdvector.}.
Each bitvector can be constructed out of a \sdslbitvector\ object.

\subsection{Rank Supports (\href{\sdslgitinc/rank_support.hpp}{RS})}
RSs add rank functionality to BV. Methods 
\code{rank($i$)} and \code{operator($i$)} return the number
of set bits\footnote{It is also possible to rank \code{0} or
the patterns \code{10} and \code{01}.} in the prefix $[0..i)$ of the
supported BV for $i \in [0,n]$.
\begin{tabular}{@{}llll@{}}
\textit{Class}    & \textit{Compatible BV} & \textit{+Bits} & \textit{Time} \\
\href{\sdslgitinc/rank_support_v.hpp}{\sdslranksupportv} &
\sdslbitvector & $0.25 n$ & \Order{1} \\
\href{\sdslgitinc/rank_support_v5.hpp}{\sdslranksupportvV} &
\sdslbitvector & $0.0625 n$ & \Order{1} \\
\href{\sdslgitinc/rank_support_scan.hpp}{\sdslranksupportscan} &
\sdslbitvector & 64 & \Order{n} \\
\href{\sdslgitinc/rank_support_il.hpp}{\sdslranksupportil} &
\sdslbitvectoril & 128 & \Order{1} \\
\href{\sdslgitinc/rrr_vector.hpp}{\sdslranksupportrrr} &
\sdslrrrvector & 80 & \Order{k} \\
\href{\sdslgitinc/sd_vector.hpp}{\sdslranksupportsd} &
\sdslsdvector & 64 & \Order{\log{\frac{n}{m}}} \\
\href{\sdslgitinc/hyb_vector.hpp}{\sdslranksupporthyb} &
\sdslhybvector & 64 & - \\
\end{tabular}
Call~\code{util::init\_support(rs,bv)}~to initialize rank
structure \code{rs} to bitvector \code{bv}. Call \code{rs($i$)} to get $\code{rank(}i\code{)}=\sum_{k=0}^{k<i}\code{bv[}k\code{]}$

\subsection{Select Supports (\href{\sdslgitinc/select_support.hpp}{SLS})}\label{sec-SLS}
SLSs add select functionality to BV. Let $m$ be the number of set bits
in BV. Methods \code{select($i$)} and \code{operator($i$)} return the
position of the $i$-th set bit%
\footnote{It is also possible to select \code{0} or
the patterns \code{10} and \code{01}.}
in BV for $i\in [1..m]$.
\begin{tabular}{@{~}l@{~}l@{~~}p{9ex}l@{}}
\textit{Class}    &\textit{Compatible BV}  &\textit{+Bits}&\textit{Time}\\
\href{\sdslgitinc/select_support_mcl.hpp}{\sdslselectsupportmcl} &
\sdslbitvector & $\leq\!0.2 n$ & \Order{1}\\
\href{\sdslgitinc/select_support_scan.hpp}{\sdslselectsupportscan} &
\sdslbitvector & $64$ & \Order{n}\\
\href{\sdslgitinc/select_support_il.hpp}{\sdslselectsupportil} &
\sdslbitvectoril & $64$ & \Order{\log n}\\
\href{\sdslgitinc/rrr_select_support.hpp}{\sdslselectsupportrrr} &
\sdslrrrvector & $64$ & $\Order{\log n}$ \\
\href{\sdslgitinc/sd_select_support.hpp}{\sdslselectsupportsd} &
\sdslsdvector & $64$ & \Order{1} \\
\end{tabular}
Call~\code{util::init\_support(sls,bv)}~to initialize \code{sls} 
to bitvector \code{bv}. Call \code{sls($i$)} to get
$\code{select(}i\code{)}=\min\{j\mid \code{rank(}j\!+\!1\code{)}=i\}$. 

\subsection{Wavelet Trees (\href{\sdslgitinc/wavelet_trees.hpp}{WT}=BV+RS+SLS)}
Wavelet trees represent sequences over byte or integer alphabets of size $\sigma$ 
and consist of a tree of BVs. Rank and select on the sequences is reduced to rank and select on BVs,
and the runtime is multiplied by a factor in $[H_0,\log\sigma]$.
\begin{tabular}{@{}llccc@{}}
\textit{Class}    &\textit{Shape} & \code{lex\_ordered} & \textit{Default}   &   Travers- \\
                  &               &                     &  \textit{alphabet} &    able    \\
\href{\sdslgitinc/wt_rlmn.hpp}{\sdslwtrlmn} & \multicolumn{3}{c}{underlying WT dependent}& \myNO \\
\href{\sdslgitinc/wt_gmr.hpp}{\sdslwtgmr}   & \multicolumn{1}{c}{none}     & \myNO & integer & \myNO \\
\href{\sdslgitinc/wt_ap.hpp}{\sdslwtap}   & \multicolumn{1}{c}{none}     & \myNO & integer & \myNO \\
\href{\sdslgitinc/wt_huff.hpp}{\sdslwthuff} & Huffman & \myNO & byte    & \myYES \\
\href{\sdslgitinc/wm_int.hpp}{\sdslwmint} & Balanced & \myNO  & integer & \myYES \\
\href{\sdslgitinc/wt_blcd.hpp}{\sdslwtblcd} & Balanced & \myYES & byte  & \myYES \\
\href{\sdslgitinc/wt_hutu.hpp}{\sdslwthutu} & Hu-Tucker & \myYES & byte & \myYES \\
\href{\sdslgitinc/wt_int.hpp}{\sdslwtint} & Balanced & \myYES & integer & \myYES \\
% TODO: \verb!wt_rlg!
\end{tabular}
\textit{Public~types:} \code{value\_type}, \code{size\_type}, and \code{node\_type}
(if WT is traversable). 
In the following let $c$ be a symbol, $i$,$j$,$k$, and $q$ integers, 
$v$ a node, and $r$ a range.\\
\textit{Public~methods:} 
\code{size()}, 
\code{operator[$i$]},
\code{rank($i$,c)},
\code{select($i$,c)},
\code{inverse\_select($i$)},
\code{begin()}, \code{end()}.
\\
Traversable WTs provide also: 
\code{root()}, \code{is\_leaf($v$)},
\code{empty($v$)}, \code{size($v$)}, \code{sym($v$)},
\code{expand($v$)},
\code{expand($v$,$r$)},
\code{expand($v$,std::vector<$r$>)},
\code{bit\_vec($v$)}, \code{seq($v$)}.\\
\code{lex\_ordered} WTs provide also:
\code{lex\_count($i$,$j$,$c$)} and 
\code{lex\_smaller\_count($i$,$c$)}.    
\sdslwtint\ provides: 
\code{range\_search\_2d}.\\
\href{\sdslgitinc/wt_algorithm.hpp}{wt\_algorithm.hpp}
contains the following generic WT method (let $wt$ be 
a WT object):
\code{intersect($wt$, vector<$r$>)}, 
\code{quantile\_freq($wt$,$i$,$j$,$q$)},
\code{interval\_symbols($wt$,$i$,$j$,$k$,...)},
\code{symbol\_lte($wt$,$c$)},
\code{symbol\_gte($wt$,$c$)},
\code{restricted\_unique\_range\_values($wt$,$x_i$,$x_j$,$y_i$,$y_j$)}.

\subsection{Suffix Arrays (\href{\sdslgitinc/suffix_arrays.hpp}{CSA}=IV+WT)}
Compressed suffix arrays use CIVs or WTs to represent
the suffix arrays (SA), its inverse (ISA), BWT, $\Psi$, and
LF. CSAs can be built over byte and integer alphabets. 
\begin{tabular}{@{}ll@{}}
\textit{Class}    &\textit{Description} \\
\href{\sdslgitinc/csa_bitcompressed.hpp}{\sdslcsabitcompressed} &
Based on SA and ISA stored in a IV.\\
\href{\sdslgitinc/csa_sada.hpp}{\sdslcsasada} &
Based on $\Psi$ stored in a CIV.\\
\href{\sdslgitinc/csa_wt.hpp}{\sdslcsawt} &
Based on the BWT stored in a WT.\\
\end{tabular}	
\textit{Public~methods:}
\code{operator[$i$]}, 
\code{size()},
\code{begin()},
\code{end()}.
\\
\textit{Public~members:} 
\code{isa},
\code{bwt}, 
\code{lf}, 
\code{psi}, 
\code{text}, 
\code{L}, 
\code{F},
\code{C}, \code{char2comp}, \code{comp2char}, \code{sigma}.\\
\textit{Policy classes: } alphabet strategy 
(e.g.
\href{\sdslgitinc/csa_alphabet_strategy.hpp}{\sdslbytealphabetstrategy},
\href{\sdslgitinc/csa_alphabet_strategy.hpp}{\sdslsuccinctbytealphabetstrategy},
\href{\sdslgitinc/csa_alphabet_strategy.hpp}{\sdslintalphabetstrategy})
and SA sampling strategy 
(e.g. 
 \href{\sdslgitinc/csa_sampling_strategy.hpp}{\sdslsaordersasampling},
 \href{\sdslgitinc/csa_sampling_strategy.hpp}{\sdsltextordersasampling}
)


\subsection{Longest Common Prefix (\href{\sdslgitinc/lcp.hpp}{LCP}) Arrays}
\begin{tabular}{@{}ll@{}}
\textit{Class}    &\textit{Description} \\
\href{\sdslgitinc/lcp_bitcompressed.hpp}{\sdsllcpbitcompressed} &
Values in a \href{\sdslgitinc/int_vector.hpp}{\sdslintvectorZ}.\\
\href{\sdslgitinc/lcp_dac.hpp}{\sdsllcpdac} &
Direct accessible codes used.\\
\href{\sdslgitinc/lcp_byte.hpp}{\sdsllcpbyte} &
Small values in a byte; 2 words per large.\\
\href{\sdslgitinc/lcp_wt.hpp}{\sdsllcpwt} &
Small values in a WT; 1 word per large.\\
\href{\sdslgitinc/lcp_vlc.hpp}{\sdsllcpvlc} &
Values in a \href{\sdslgitinc/vlc_vector.hpp}{vlc\_vector}. \\
\href{\sdslgitinc/lcp_support_sada.hpp}{\sdsllcpsupportsada} &
Values stored permuted. CSA needed. \\
\href{\sdslgitinc/lcp_support_tree.hpp}{\sdsllcpsupporttree} &
Only depths of CST inner nodes stored.\\
\href{\sdslgitinc/lcp_support_tree2.hpp}{\sdsllcpsupporttreeII} &
~+ large values are sampled using LF.\\
\end{tabular}	
\textit{Public~methods:} 
\code{operator[$i$]},
\code{size()},
\code{begin()},
\code{end()} \\

\subsection{Balanced Parentheses Supports (\href{\sdslgitinc/bp_support.hpp}{BPS})}
We represent a sequence of parentheses as a \code{bit\_vector}. 
An opening/closing parenthesis corresponds to \code{1}/\code{0}.\\
\begin{tabular}{@{}ll@{}}
\textit{Class}    &\textit{Description} \\
\href{\sdslgitinc/bp_support_g.hpp}{\sdslbpsupportg} &
Two-level pioneer structure.\\
\href{\sdslgitinc/bp_support_gg.hpp}{\sdslbpsupportgg} &
Multi-level pioneer structure.\\
\href{\sdslgitinc/bp_support_sada.hpp}{\sdslbpsupportsada} &
Min-max-tree over excess sequence.\\
\end{tabular}
\textit{Public~methods:} \code{find\_open($i$)}, \code{find\_close($i$)},
\code{enclose($i$)}, \code{double\_enclose($i$,$j$)}, \code{excess($i$)},
\code{rr\_enclose($i$,$j$)}, \code{rank($i$)}\footnote{For PBS the
bits are counted in the prefix $[0..i]$.}, \code{select($i$)}.
\\

Call~\code{util::init\_support(bps,bv)}~to initialize a BPS 
\code{bps} to \code{bit\_vector} \code{bv}. 


\subsection{Suffix Trees (\href{\sdslgitinc/suffix_trees.hpp}{CST}=CSA+LCP+BPS)}
A CST can be parametrized by any combination of CSA ,LCP, and BPS.
The operation of each part can still be accessed through member varaibles.
The additional operations are listed below.
CSTs can be built for byte or integer alphabets.
\settowidth{\MyLen}{\sdslcstsada\quad}
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}

\textit{Class} & \textit{Description} \\				
\href{\sdslgitinc/cst_sada.hpp}{\sdslcstsada} &
Represents a node as position in BPS. Navigational operations
are fast (they are directly translated in BPS operations on 
the DFS-BPS). Space: $4n\!+\!o(n)\!+\!|CSA|\!+\!|LCP|$ bits.\\
\href{\sdslgitinc/cst_sct3.hpp}{\sdslcstsctIII} &
Represents nodes as intervals. Fast construction, but
slower navigational operations. Space: $3n\!+\!o(n)\!+\!|CSA|\!+\!|LCP|$ \\
\end{tabular}
\textit{Public~types:} \code{node\_type}. 
In the following let $v$ and $w$ be nodes 
and $i$, $d$, $lb$, $rb$ integers.\\ 
\textit{Public~methods:} 
% CST global information
\code{size()},
\code{nodes()},
\code{root()},
\code{begin()},
\code{end()},
\code{begin\_bottom\_up()},
\code{end\_bottom\_up},
% CST node info
\code{size($v$)},
\code{is\_leaf($v$)},
\code{degree($v$)},
\code{depth($v$)},
\code{node\_depth(v)},
\code{edge($v$, $d$)},
\code{lb($v$)},
\code{rb($v$)},
\code{id($v$)},
\code{inv\_id($i$)},
\code{sn($v$)},
% CST global navigation 
\code{select\_leaf($i$)},
\code{node($lb$, $rb$)},
% CST node navigation 
\code{parent($v$)},
\code{sibling($v$)},
\code{lca($v$, $w$)},
\code{select\_child($v$, $i$)},
\code{child($v$, $c$)},
\code{children($v$)},
\code{sl($v$)},
\code{wl($v$, $c$)},
\code{leftmost\_leaf($v$)},
\code{rightmost\_leaf($v$)}
\\
\textit{Public~members:} \code{csa}, \code{lcp}.\\
The \href{\sdslgit/tutorial/cst-traversal.cpp}{traversal example}
shows how to use the DFS-iterator.
%\textit{Iterators methods:} \code{operator++},
%\code{visit()}, \code{skip\_subtree()}   	

\subsection{Range Min/Max Query (\href{\sdslgitinc/rmq_support.hpp}{RMQ})}
A RMQ \code{rmq} can be used to determine the position of the miniumum
value\footnote{Or maximum value; can be set by a template parameter.}
in an arbitrary subrange $[i,j]$ of an preprocessed vector \code{v}.
Operator \code{operator($i$,$j$)} returns $x=\min\{$r$\mid r\in [i,j] \wedge \mbox{\code{v}[$r$]}\leq\mbox{\code{v[$k$]}}\ \forall k\in[i,j]\}$

\settowidth{\MyLen}{\sdslrmqsupportsparsetable\quad }
\settowidth{\MidLen}{$4n+o(n)$\quad}
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MidLen-\the\MyLen}@{}p{\the\MidLen}@{}}
\textit{Class} & \textit{Space} & \textit{Time} \\				
\href{\sdslgitinc/rmq_support_sparse_table.hpp}{\sdslrmqsupportsparsetable} &
$n \log^2 n$ & \Order{1} \\
\href{\sdslgitinc/rmq_succinct_sada.hpp}{\sdslrmqsuccinctsada} &
$4n+o(n)$    & \Order{1} \\
\href{\sdslgitinc/rmq_succinct_sct.hpp}{\sdslrmqsuccinctsct} &
$2n+o(n)$    & \Order{1} \\
\end{tabular}

\section{Constructing data structures}
Let \code{o} be a WT-, CSA-, or CST-object.
Object \code{o} is built with \code{construct(o,file,num\_bytes=$0$)}
from a sequence stored in \code{file}. File is interpreted
dependent on the value of \code{num\_bytes}:
\settowidth{\MyLen}{\code{num\_bytes=$1$}  }
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
%\begin{tabular}{@{}ll@{}}
\textit{Value}      & \textit{File interpreted as}  \\
\code{num\_bytes=$0$} & serialized \code{int\_vector<>}.\\
\code{num\_bytes=$1$} & byte sequence of length \code{util::file\_size(file)}.\\
\code{num\_bytes=$2$} & 16-bit word sequence.\\
\code{num\_bytes=$4$} & 32-bit word sequence.\\
\code{num\_bytes=$8$} & 64-bit word sequence.\\	
\code{num\_bytes=d} & Parse decimal numbers.\\
\end{tabular}
Note: \code{construct} writes/reads data to/from
disk during construction. Accessing disk for small
instances is a considerable overhead. \code{construct\_im(o,data,num\_bytes=$0$)} will
build \code{o} using only main memory. Have a look
at \href{\sdslgit/tutorial/csx-printf.cpp}{this handy tool for an example}.

\subsection{Configuring construction}
The locations and names of the intermediate files
can be configured by a \code{cache\_config} object.
It is constructed by 
\code{cache\_config(del,tmp\_dir,id, map)}
where
\code{del} is a boolean variable which specifies
if the intermediate files should be deleted after construction,
\code{tmp\_dir} is a path to the directory where
the intermediate files should be stored,
\code{id} is used as part of the file names,
and \code{map} contains a mapping of keys
(e.g. \href{\sdslgitinc/config.hpp}{\code{conf::KEY\_BWT}}, 
      \href{\sdslgitinc/config.hpp}{\code{conf::KEY\_SA}},\ldots)
to file paths.\\
The \code{cache\_config} parameter extends the construction method to:
\code{construct(o,file,config,num\_bytes)}.\\
The following methods (\code{key} is a key string, \code{config} represenet a  
\code{cache\_config} object, and \code{o} a \sdsl\ object) should be handy
in customized construction processes:\\
\code{cache\_file\_name(key,config)}\\
\code{cache\_file\_exists(key,config)}\\
\code{register\_cache\_file(key,config)}\\
\code{load\_from\_cache(o,key,config)}\\
\code{store\_to\_cache(o,key,config)}\\

\subsection{Resource requirements}
\textit{Memory}: The memory peak of CSA and CST construction occurs during the SA
construction, which is $5$ times the texts size for byte-alphabets
and inputs $<2$ GiB (see the Figure below for a $200$ MB text) 
and $9$ times for larger inputs. For integer
alphabets the construction takes about twice the space of
the resulting output.\\
\textit{Time}: A CST construction processes at about $2\mbox{ MB}/s$.
The Figure below shows the resource consumption during the construction
of a \code{cst\_sct3<>} CST for \href{\pizzachili}{$200$ MB English text}.
For a detailed description of the phases click on the figure.
\href{http://simongog.github.io/assets/data/cst-construction.html}{%
\scalebox{0.18}{%
\includegraphics{viz.pdf}%
}%
}
This diagram was generated using the sample program
\href{\sdslgit/examples/memory-visualization.cpp}{memory-visualization.cpp}.

\section{Reading and writing data}
\subsection{Importing data into \sdsl\ structures}
\begin{tabular}{@{}p{0.9\linewidth}@{}}
\code{load\_vector\_from\_file(v, file, num\_bytes)} \\
Load \code{file} into an \code{int\_vector}~\code{v}. Interpretation
of \code{file} depends on \code{num\_bytes}; see method \code{construct}.
\end{tabular}
%TODO: mention io wrappers


\subsection{Store \sdsl\ structures}
Use \code{store\_to\_file(o, file)} 
to store an \sdsl\ object \code{o} to \code{file}.
Object \code{o} can also be serialized
into a \code{std::ostream}-object \code{out}
by the call \code{o.serialize(out)}.

%\code{write\_member($x$,out)}
%\code{read\_member($x$,in)}

\subsection{Load \sdsl\ structures}
Use \code{load\_from\_file(o, file)} to load 
an \sdsl\ object \code{o}, which is stored in \code{file}. 
Call \code{o.load(in)} reads \code{o} from
\code{std::istream}-object \code{in}.

%TODO: mention io wrappers

\section{Utility methods}
More useful methods in the \code{sdsl::util} namespace:


\settowidth{\MyLen}{\code{assign(t1,t2)}~}
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
%\begin{tabular}{@{}ll@{}}
\textit{Method}      & \textit{Description}  \\
\code{pid()}         & Id of current process. \\
\code{id()}          & Get unique id inside the process. \\
\code{basename(p)}   & Get filename part of a path \code{p}.  \\
\code{dirname(p)}    & Get directory part of a path \code{p}. \\
\code{demangle(o)}   & Demangles output of \code{typeid(o).name()}.\\
\code{demangle2(o)}  & Simplifies output of \code{demangle}. E.g. removes \code{sdsl::}-prefixes, \ldots \\
\code{to\_string(o)} & Transform object \code{o} to a string. \\
\code{assign(o1,o2)} & Assign \code{o1} to \code{o2}, or swap \code{o1} and \code{o2} if
                       the objects are of the same type.\\
\code{clear(o)}      & Set o to the empty object.\\
%\code{swap\_support(s1, s2, t1, t2)}\\
\end{tabular}

\section{Measuring and Visualizing Space}
\code{size\_in\_bytes(o)} returns the space used by an
\sdsl\ object \code{o}. Call
\code{write\_structure<JSON\_FORMAT>(o,out)} to get
a detailed space breakdown written in 
\href{http://www.json.org/}{JSON} format to stream \code{out}.
\code{<HTML\_FORMAT>} will write a HTML page
(\href{http://simongog.github.io/assets/data/space-vis.html}{like this}),
which includes an interactive SVG-figure.


\section{Methods on words}
Class \code{bits} contains various fast methods
on a $64$-bit word $x$. Here the most important ones.
\settowidth{\MyLen}{\code{bits::sel($x$, $i$)}~}
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
%\begin{tabular}{@{}ll@{}}
\textit{Method}      & \textit{Description}  \\
\code{bits::cnt($x$)}  & Number of set bits in $x$.\\
\code{bits::sel($x$,$i$)}& Position of $i$-th set bit, $i\in[0,\code{cnt($x$)}\!-\!1)$. \\
\code{bits::lo($x$)}   & Position of least significant set bit.\\
\code{bits::hi($x$)}   & Position of most significant set bit.\\
\end{tabular}
\textit{Note}: Positions in $x$ start at $0$.
\code{lo} and \code{hi} return $0$ for $x=0$.

\section{Tests}
A \code{make test} call in the \href{\sdslgit/test}{test}
directory, downloads test inputs, compiles tests,
and executes them.

\section{Benchmarks}
Directory \href{\sdslgit/benachmark}{benchmark}
contains configurable benchmarks for various
data structure, like WTs, CSAs/FM-indexes (measuring
time and space for operations 
\href{\sdslgit/benchmark/indexing_count}{count},
\href{\sdslgit/benchmark/indexing_locate}{locate}, and
\href{\sdslgit/benchmark/indexing_extract}{extract}).

\section{Debugging}
You get the gdb command \code{pv <int\_vector> <idx1> <idx2>},
which displays the elements of an \sdslintvector\ in the
range $[\code{idx1},\code{idx2}]$ by appending  the file
\href{\sdslgit/extras/sdsl.gdb}{sdsl.gdb} to your
\code{.gdbinit}. 

%\section{Acknowledgements}
%Yuta Mori for implementing libdivsufsort, which
%is used to construct SAs.
%
%Jesper Larsson for integer-alphabet SA construction.
%
\rule{0.3\linewidth}{0.25pt}
\scriptsize

\copyright\ Simon Gog

Cheatsheet template provided by Winston Chang
http://www.stdout.org/$\sim$winston/latex/

\theendnotes

\end{multicols}
%\newpage
%~
\end{document}