1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#include "sdsl/k2_treap.hpp"
#include "sdsl/bit_vectors.hpp"
#include "gtest/gtest.h"
#include <vector>
#include <tuple>
#include <string>
#include <algorithm> // for std::min. std::sort
#include <random>
namespace
{
using namespace sdsl;
using namespace std;
typedef int_vector<>::size_type size_type;
string test_file;
string temp_file;
bool in_memory;
template<class T>
class k2_treap_test : public ::testing::Test { };
using testing::Types;
typedef Types<
k2_treap<2, bit_vector>,
k2_treap<2, rrr_vector<63>>,
k2_treap<3, bit_vector>,
k2_treap<4, rrr_vector<63>>,
k2_treap<5, rrr_vector<63>>,
k2_treap<6, rrr_vector<63>>,
k2_treap<16, rrr_vector<63>>
> Implementations;
TYPED_TEST_CASE(k2_treap_test, Implementations);
TYPED_TEST(k2_treap_test, CreateAndStoreTest)
{
TypeParam k2treap;
construct(k2treap, test_file);
ASSERT_TRUE(store_to_file(k2treap, temp_file));
}
template<class t_k2treap>
void topk_test(
const t_k2treap& k2treap,
complex<uint64_t> min_xy,
complex<uint64_t> max_xy,
const int_vector<>& x,
const int_vector<>& y,
const int_vector<>& w)
{
auto res_it = top_k(k2treap, {real(min_xy),imag(min_xy)}, {real(max_xy),imag(max_xy)});
typedef tuple<uint64_t, uint64_t, uint64_t> t_xyw;
vector<t_xyw> vec;
for (uint64_t i = 0; i < x.size(); ++i) {
if (x[i] >= real(min_xy) and x[i] <= real(max_xy)
and y[i] >= imag(min_xy) and y[i] <= imag(max_xy)) {
vec.emplace_back(x[i], y[i], w[i]);
}
}
sort(vec.begin(), vec.end(), [](const t_xyw& a, const t_xyw& b) {
if (get<2>(a) != get<2>(b))
return get<2>(a) > get<2>(b);
else if (get<0>(a) != get<0>(b))
return get<0>(a) < get<0>(b);
return get<1>(a) < get<1>(b);
});
uint64_t cnt = 0;
while (res_it) {
ASSERT_TRUE(cnt < vec.size());
auto p = *res_it;
ASSERT_EQ(get<2>(vec[cnt]), p.second);
ASSERT_EQ(get<0>(vec[cnt]), real(p.first));
ASSERT_EQ(get<1>(vec[cnt]), imag(p.first));
++res_it;
++cnt;
}
ASSERT_FALSE(res_it);
}
TYPED_TEST(k2_treap_test, size_and_top_k)
{
TypeParam k2treap;
ASSERT_TRUE(load_from_file(k2treap, temp_file));
int_vector<> x,y,w;
ASSERT_TRUE(load_from_file(x, test_file+".x"));
ASSERT_TRUE(load_from_file(y, test_file+".y"));
ASSERT_EQ(x.size(), y.size());
ASSERT_TRUE(load_from_file(w, test_file+".w"));
ASSERT_EQ(x.size(), w.size());
ASSERT_EQ(x.size(), k2treap.size());
uint64_t maxx=0, maxy=0;
if (x.size() > 0) {
maxx = *max_element(x.begin(), x.end());
maxy = *max_element(y.begin(), y.end());
}
uint64_t minx=0, miny=0;
topk_test(k2treap, {minx,maxx}, {miny,maxy}, x, y, w);
if (x.size() > 0) {
std::mt19937_64 rng;
std::uniform_int_distribution<uint64_t> distribution(0, x.size()-1);
auto dice = bind(distribution, rng);
for (size_t i=0; i<20; ++i) {
auto idx = dice();
uint64_t xx = x[idx];
uint64_t yy = y[idx];
uint64_t dd = 20;
uint64_t minx=0, miny=0, maxx=xx+dd, maxy=yy+dd;
if (xx >= dd)
minx = xx - dd;
if (yy >= dd)
miny = yy - dd;
topk_test(k2treap, {minx, miny}, {maxx,maxy}, x, y, w);
}
}
}
template<class t_k2treap>
void range3d_test(
const t_k2treap& k2treap,
complex<uint64_t> min_xy,
complex<uint64_t> max_xy,
complex<uint64_t> z,
const int_vector<>& x,
const int_vector<>& y,
const int_vector<>& w)
{
auto res_it = range_3d(k2treap, {real(min_xy),imag(min_xy)},
{real(max_xy),imag(max_xy)},
{real(z), imag(z)});
typedef tuple<uint64_t, uint64_t, uint64_t> t_xyw;
vector<t_xyw> vec;
for (uint64_t i = 0; i < x.size(); ++i) {
if (x[i] >= real(min_xy) and x[i] <= real(max_xy)
and y[i] >= imag(min_xy) and y[i] <= imag(max_xy)) {
vec.emplace_back(x[i], y[i], w[i]);
}
}
sort(vec.begin(), vec.end(), [](const t_xyw& a, const t_xyw& b) {
if (get<2>(a) != get<2>(b))
return get<2>(a) > get<2>(b);
else if (get<0>(a) != get<0>(b))
return get<0>(a) < get<0>(b);
return get<1>(a) < get<1>(b);
});
uint64_t cnt = 0;
while (res_it) {
ASSERT_TRUE(cnt < vec.size());
auto p = *res_it;
ASSERT_EQ(get<2>(vec[cnt]), p.second);
ASSERT_EQ(get<0>(vec[cnt]), real(p.first));
ASSERT_EQ(get<1>(vec[cnt]), imag(p.first));
++res_it;
++cnt;
}
ASSERT_FALSE(res_it);
}
TYPED_TEST(k2_treap_test, range_3d)
{
TypeParam k2treap;
ASSERT_TRUE(load_from_file(k2treap, temp_file));
int_vector<> x,y,w;
ASSERT_TRUE(load_from_file(x, test_file+".x"));
ASSERT_TRUE(load_from_file(y, test_file+".y"));
ASSERT_EQ(x.size(), y.size());
ASSERT_TRUE(load_from_file(w, test_file+".w"));
ASSERT_EQ(x.size(), w.size());
ASSERT_EQ(x.size(), k2treap.size());
if (x.size() > 0) {
std::mt19937_64 rng;
std::uniform_int_distribution<uint64_t> distribution(0, x.size()-1);
auto dice = bind(distribution, rng);
for (size_t i=0; i<20; ++i) {
auto idx = dice();
uint64_t xx = x[idx];
uint64_t yy = y[idx];
uint64_t ww = w[idx];
uint64_t dd = 20;
uint64_t dw = 100;
uint64_t minx=0, miny=0, maxx=xx+dd, maxy=yy+dd, minw=0, maxw=ww+dw;
if (xx >= dd)
minx = xx - dd;
if (yy >= dd)
miny = yy - dd;
if (ww >= dw)
minw = ww - dw;
range3d_test(k2treap, {minx, miny}, {maxx,maxy}, {minw,maxw}, x, y, w);
}
}
}
template<class t_k2treap>
void count_test(
const t_k2treap& k2treap,
complex<uint64_t> min_xy,
complex<uint64_t> max_xy,
const int_vector<>& x,
const int_vector<>& y)
{
uint64_t cnt = 0;
for (uint64_t i = 0; i < x.size(); ++i) {
if (x[i] >= real(min_xy) and x[i] <= real(max_xy)
and y[i] >= imag(min_xy) and y[i] <= imag(max_xy)) {
++cnt;
}
}
ASSERT_EQ(cnt, count(k2treap, {real(min_xy),imag(min_xy)}, {real(max_xy),imag(max_xy)}));
}
TYPED_TEST(k2_treap_test, count)
{
TypeParam k2treap;
ASSERT_TRUE(load_from_file(k2treap, temp_file));
int_vector<> x,y;
ASSERT_TRUE(load_from_file(x, test_file+".x"));
ASSERT_TRUE(load_from_file(y, test_file+".y"));
ASSERT_EQ(x.size(), y.size());
ASSERT_EQ(x.size(), k2treap.size());
if (x.size() > 0) {
std::mt19937_64 rng;
std::uniform_int_distribution<uint64_t> distribution(0, x.size()-1);
auto dice = bind(distribution, rng);
for (size_t i=0; i<3; ++i) {
auto idx1 = dice();
auto idx2 = dice();
uint64_t x1 = x[idx1];
uint64_t y1 = y[idx1];
uint64_t x2 = x[idx2];
uint64_t y2 = y[idx2];
count_test(k2treap, {std::min(x1,x2), std::min(y1,y2)}, {std::max(x1,x2),std::max(y1,y2)}, x, y);
}
}
}
} // namespace
int main(int argc, char** argv)
{
::testing::InitGoogleTest(&argc, argv);
if (argc < 3) {
// LCOV_EXCL_START
cout << "Usage: " << argv[0] << " file temp_file [in-memory]" << endl;
cout << " (1) Generates a k2-treap out of file.x, file.y, and file.w." << endl;
cout << " Result is stored in temp_file." << endl;
cout << " If `in-memory` is specified, the in-memory construction is tested." << endl;
cout << " (2) Performs tests." << endl;
cout << " (3) Deletes temp_file." << endl;
return 1;
// LCOV_EXCL_STOP
}
test_file = argv[1];
temp_file = argv[2];
in_memory = argc > 3;
if (in_memory) {
auto load_and_store_in_mem = [&](string suf) {
int_vector<> data;
string file = temp_file + suf;
load_vector_from_file(data,file);
string ram_file = ram_file_name(file);
store_to_file(data, ram_file);
};
load_and_store_in_mem("x");
load_and_store_in_mem("y");
load_and_store_in_mem("w");
temp_file = ram_file_name(temp_file);
}
return RUN_ALL_TESTS();
}
|