1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
|
/* sdsl - succinct data structures library
Copyright (C) 2012-2013 Simon Gog
Copyright (C) 2013 Timo Beller
*/
#include "sdsl/construct_lcp.hpp"
#include "sdsl/construct.hpp"
#include <stdexcept>
#include <algorithm>
namespace sdsl
{
void construct_lcp_semi_extern_PHI(cache_config& config)
{
typedef int_vector<>::size_type size_type;
int_vector_buffer<> sa_buf(cache_file_name(conf::KEY_SA, config));
size_type n = sa_buf.size();
if (1==n) {
int_vector<> lcp(1, 0);
store_to_cache(lcp, conf::KEY_LCP, config);
return;
}
const uint8_t log_q = 6; // => q=64
const uint32_t q = 1<<log_q;
const uint64_t modq = bits::lo_set[log_q];
// n-1 is the maximum entry in SA
int_vector<64> plcp((n-1+q)>>log_q);
for (size_type i=0, sai_1=0; i < n; ++i) { // we can start at i=0. if SA[i]%q==0
// we set PHI[(SA[i]=n-1)%q]=0, since T[0]!=T[n-1]
size_type sai = sa_buf[i];
if ((sai & modq) == 0) {
if ((sai>>log_q) >= plcp.size()) {
// std::cerr<<"sai="<<sai<<" log_q="<<log_q<<" sai>>log_q="<<(sai>>log_q)<<" "<<sai_1<<std::endl;
// std::cerr<<"n="<<n<<" "<<" plcp.size()="<<plcp.size();
}
plcp[sai>>log_q] = sai_1;
}
sai_1 = sai;
}
int_vector<8> text;
load_from_cache(text, conf::KEY_TEXT, config);
for (size_type i=0,j,k,l=0; i < plcp.size(); ++i) {
j = i<<log_q; // j=i*q
k = plcp[i];
while (text[j+l] == text[k+l])
++l;
plcp[i] = l;
if (l >= q) {
l -= q;
} else {
l = 0;
}
}
size_type buffer_size = 4000000; // buffer_size is a multiple of 8!
sa_buf.buffersize(buffer_size);
int_vector_buffer<> lcp_out_buf(cache_file_name(conf::KEY_LCP, config), std::ios::out, buffer_size, sa_buf.width()); // open buffer for plcp
for (size_type i=0, sai_1=0,l=0, sai=0,iq=0; i < n; ++i) {
/*size_type*/ sai = sa_buf[i];
// std::cerr<<"i="<<i<<" sai="<<sai<<std::endl;
if ((sai & modq) == 0) { // we have already worked the value out ;)
lcp_out_buf[i] = l=plcp[sai>>log_q];
} else {
/*size_type*/ iq = sai & bits::lo_unset[log_q];
l = plcp[sai>>log_q];
if (l > (sai-iq))
l -= (sai-iq);
else
l=0;
while (text[ sai+l ] == text[ sai_1+l ])
++l;
lcp_out_buf[i] = l;
}
#ifdef CHECK_LCP
size_type j=0;
for (j=0; j<l; ++j) {
if (text[sai+j] !=text[sai_1+j]) {
std::cout<<"lcp["<<i<<"]="<<l<<" is two big! "<<j<<" is right!"<<" sai="<<sai<<std::endl;
if ((sai&modq)!=0)
std::cout<<" plcp[sai>>log_q]="<<plcp[sai>>log_q]<<" sai-iq="<<sai-iq<<" sai="<<sai<<" sai-iq="<<sai-iq<<std::endl;
break;
}
}
#endif
sai_1 = sai;
}
lcp_out_buf.close();
register_cache_file(conf::KEY_LCP, config);
return;
}
void construct_lcp_go(cache_config& config)
{
typedef int_vector<>::size_type size_type;
#ifdef STUDY_INFORMATIONS
size_type racs = 0; // random accesses to the text
size_type matches = 0;
size_type comps2 = 0; // comparisons the second phase
#endif
int_vector<8> text;
load_from_cache(text, conf::KEY_TEXT, config);
int_vector_buffer<> sa_buf(cache_file_name(conf::KEY_SA, config)); // initialize buffer for suffix array
const size_type n = sa_buf.size();
const size_type m = 254; // LCP[i] == m+1 corresp. to LCP[i]>= m+1; LCP[i] <= m corresp. to LCP[i] was calculated
if (1==n) {
int_vector<> lcp(1, 0);
store_to_cache(lcp, conf::KEY_LCP, config);
return;
}
size_type cnt_c[257] = {0}; // counter for each character in the text
size_type cnt_cc[257] = {0}; // prefix sum of the counter cnt_c
size_type cnt_cc2[257] = {0}; //
size_type omitted_c[257] = {0}; // counts the omitted occurrences for the second phase
size_type prev_occ_in_bwt[256] = {0}; // position of the previous occurrence of each character c in the bwt
for (size_type i=0; i<256; ++i) prev_occ_in_bwt[i] = (size_type)-1; // initialize the array with -1
unsigned char alphabet[257] = {0};
uint8_t sigma = 0;
tLI m_list[2][256];
size_type m_char_count[2] = {0};
uint8_t m_chars[2][256] = {{0},{0}};
size_type nn = 0; // n' for phase 2
// phase 1: calculate lcp_sml; memory consumption: 2n bytes (lcp_sml=n bytes, text=n bytes)
{
int_vector<8> lcp_sml(n, 0); // initialize array for small values of first phase; note lcp[0]=0
size_type done_cnt=0;
for (size_type i=0; i<n; ++i) { // initialize cnt_c
++cnt_c[text[i]+1];
}
for (int i=1; i<257; ++i) { // calculate sigma and initailize cnt_cc
if (cnt_c[i] > 0) {
alphabet[sigma++] = (unsigned char)(i-1);
}
cnt_cc[i] = cnt_c[i] + cnt_cc[i-1];
}
alphabet[sigma] = '\0';
{
int_vector_buffer<8> bwt_buf(cache_file_name(conf::KEY_BWT, config)); // initialize buffer of bwt
size_type sai_1 = sa_buf[0]; // store value of sa[i-1]
uint8_t bwti_1 = bwt_buf[0]; // store value of BWT[i-1]
lcp_sml[ cnt_cc[bwti_1]++ ] = 0; // lcp_sml[ LF[0] ] = 0
prev_occ_in_bwt[bwti_1] = 0; // init previous occurence of character BWT[0]
++omitted_c[alphabet[0]]; //
int_vector<64> rmq_stack(2*(m+10)); // initialize stack for m+10 elements representing (position, value)
rmq_stack[0] = 0; rmq_stack[1] = 0; // first element (-1, -1)
rmq_stack[2] = 1; rmq_stack[3] = 0; // second element (0, -1)
size_type rmq_end=3; // index of the value of the topmost element
const size_type m_mod2 = m%2;
uint8_t cur_c = alphabet[1];
size_type big_val = 0;
for (size_type i=1, sai, cur_c_idx=1, cur_c_cnt=cnt_c[alphabet[1]+1]; i < n; ++i, --cur_c_cnt) {
uint8_t bwti = bwt_buf[i];
sai = sa_buf[i];
size_type lf = cnt_cc[bwti];
if (!cur_c_cnt) {// cur_c_cnt==0, if there is no more occurence of the current character
if (cur_c_cnt < sigma) {
cur_c_cnt = cnt_c[(cur_c=alphabet[++cur_c_idx])+1];
}
}
size_type l=0;
if (i >= cnt_cc[cur_c]) { // if the current lcp entry is not already done TODO: schleife von i bis cnt_cc[cur_c]
if (bwti == bwti_1 and lf < i) { // BWT[i]==BWT[i-1]
l = lcp_sml[lf] ? lcp_sml[lf]-1 : 0; // l = LCP[LF[i]]-1; l < m+1
if (l == m) { // if LCP[LF[i]] == m+1; otherwise LCP[LF[i]] < m+1 the result is correct
l += (text[sai_1+m] == text[sai+m]);
#ifdef STUDY_INFORMATIONS
if ((sai_1^sai)>>6) // if i and phii are in the same cache line
++racs;
#endif
}
lcp_sml[i] = l;
++done_cnt;
} else { // BWT[i] != BWT[i-1] or LF[i] > i
if (lf < i)
l = lcp_sml[lf] ? lcp_sml[lf]-1 : 0;
#ifdef STUDY_INFORMATIONS
if ((sai_1^sai)>>6) // if i and phii are in the same cache line
++racs;
#endif
while (text[sai_1+l] == text[sai+l] and l < m+1) {
++l;
#ifdef STUDY_INFORMATIONS
++matches;
#endif
}
lcp_sml[i] = l;
}
} else { // if already done
l = lcp_sml[i]; // load LCP value
}
if (l > m) {
++big_val;
if (i > 10000 and i < 10500 and big_val > 3000) { // if most of the values are big: switch to PHI algorithm
util::clear(text);
util::clear(lcp_sml);
construct_lcp_PHI<8>(config);
return;
}
}
// invariant: l <= m+1
// begin update rmq_stack
size_type x = l+1;
size_type j = rmq_end;
while (x <= rmq_stack[j]) j-=2; // pop all elements with value >= l
rmq_stack[++j] = i+1; // push position i
rmq_stack[++j] = x; // push value l
rmq_end = j; // update index of the value of the topmost element
if (lf > i) { // if LF[i] > i, we can calculate LCP[LF[i]] in constant time with rmq
++done_cnt;
// rmq query for lcp-values in the interval I=[prev_occ_in_bwt[BWT[i]]+1..i]
// rmq is linear in the stack size; can also be implemented with binary search on the stack
size_type x_pos = prev_occ_in_bwt[bwti]+2;
j = rmq_end-3;
while (x_pos <= rmq_stack[j]) j-=2; // search smallest value in the interval I
lcp_sml[lf] = rmq_stack[j+3] - (rmq_stack[j+3]==m+2); // if lcp-value equals m+1, we subtract 1
}
if (l >= m) {
if (l == m)
push_front_m_index(nn, cur_c, m_list[m_mod2], m_chars[m_mod2], m_char_count[m_mod2]);
++nn;
} else
++omitted_c[cur_c];
prev_occ_in_bwt[bwti] = i; // update previous position information for character BWT[i]
++cnt_cc[bwti]; // update counter and therefore the LF information
sai_1 = sai; // update SA[i-1]
bwti_1 = bwti; // update BWT[i-1]
}
}
util::clear(text);
if (n > 1000 and nn > 5*(n/6)) { // if we would occupy more space than the PHI algorithm => switch to PHI algorithm
util::clear(lcp_sml);
construct_lcp_PHI<8>(config);
return;
}
store_to_cache(lcp_sml, "lcp_sml", config);
}
#ifdef STUDY_INFORMATIONS
std::cout<<"# n="<<n<<" nn="<<nn<<" nn/n="<<((double)nn)/n<<std::endl;
#endif
// phase 2: calculate lcp_big
{
// std::cout<<"# begin calculating LF' values"<<std::endl;
int_vector<> lcp_big(nn, 0, bits::hi(n-1)+1); // lcp_big first contains adapted LF values and finally the big LCP values
{
// initialize lcp_big with adapted LF values
bit_vector todo(n,0); // bit_vector todo indicates which values are >= m in lcp_sml
{
// initialize bit_vector todo
int_vector_buffer<8> lcp_sml_buf(cache_file_name("lcp_sml", config)); // load lcp_sml
for (size_type i=0; i < n; ++i) {
if (lcp_sml_buf[i] >= m) {
todo[i] = 1;
}
}
}
cnt_cc2[0] = cnt_cc[0]= 0;
for (size_type i=1, omitted_sum=0; i<257; ++i) { // initialize cnt_cc and cnt_cc2
cnt_cc[i] = cnt_c[i] + cnt_cc[i-1];
omitted_sum += omitted_c[i-1];
cnt_cc2[i] = cnt_cc[i] - omitted_sum;
}
int_vector_buffer<8> bwt_buf(cache_file_name(conf::KEY_BWT, config)); // load BWT
for (size_type i=0, i2=0; i < n; ++i) {
uint8_t b = bwt_buf[i]; // store BWT[i]
size_type lf_i = cnt_cc[b]; // LF[i]
if (todo[i]) { // LCP[i] is a big value
if (todo[lf_i]) { // LCP[LF[i]] is a big entry
lcp_big[i2] = cnt_cc2[b]; // LF'[i]
}/*else{
lcp_big[i2] = 0;
}*/
++i2;
}
if (todo[lf_i]) { // LCP[LF[i]] is a big entry
++cnt_cc2[b]; // increment counter for adapted LF
}
++cnt_cc[b]; // increment counter for LF
}
}
// std::cout<<"# begin initializing bwt2, shift_bwt2, run2"<<std::endl;
int_vector<8> bwt2(nn), shift_bwt2(nn); // BWT of big LCP values, and shifted BWT of big LCP values
bit_vector run2(nn+1); // indicates for each entry i, if i and i-1 are both big LCP values
run2[nn] = 0; // index nn is not a big LCP value
{
// initialize bwt2, shift_bwt2, adj2
int_vector_buffer<8> lcp_sml_buf(cache_file_name("lcp_sml", config)); // load lcp_sml
int_vector_buffer<8> bwt_buf(cache_file_name(conf::KEY_BWT, config)); // load BWT
uint8_t b_1 = '\0'; // BWT[i-1]
bool is_run = false;
for (size_type i=0, i2=0; i < n; ++i) {
uint8_t b = bwt_buf[i];
if (lcp_sml_buf[i] >= m) {
bwt2[i2] = b;
shift_bwt2[i2] = b_1;
run2[i2] = is_run;
is_run = true;
++i2;
} else {
is_run = false;
}
b_1 = b;
}
}
bit_vector todo2(nn+1, 1); // init all values with 1, except
todo2[nn] = 0; // the last one! (handels case "i < nn")
// std::cout<<"# begin calculating m-indices"<<std::endl;
{
// calculate m-indices, (m+1)-indices,... until we are done
size_type m2 = m;
size_type char_ex[256]; for (size_type i=0; i<256; ++i) char_ex[i] = nn;
size_type char_occ=0;
size_type m_mod2 = m2%2, mm1_mod2 = (m2+1)%2;
while (m_char_count[m_mod2] > 0) { // while there are m-indices, calculate (m+1)-indices and write m-indices
// For all values LCP[i] >= m2 it follows that todo2[i] == 1
// list m_list[mm1_mod2][b] is sorted in decreasing order
++m2;
mm1_mod2 = (m2+1)%2, m_mod2 = m2%2;
m_char_count[m_mod2] = 0;
std::sort(m_chars[mm1_mod2], m_chars[mm1_mod2]+m_char_count[mm1_mod2]); // TODO: ersetzen?
for (size_type mc=0; mc<m_char_count[mm1_mod2]; ++mc) { // for every character
tLI& mm1_mc_list = m_list[mm1_mod2][m_chars[mm1_mod2][ m_char_count[mm1_mod2]-1- mc ]];
// size_type old_i = nn;
while (!mm1_mc_list.empty()) {
size_type i = mm1_mc_list.front(); // i in [0..n-1]
mm1_mc_list.pop_front();
// For all values LCP[i] >= m-1 it follows that todo2[i] == 1
for (size_type k=i; todo2[k]; --k) {
#ifdef STUDY_INFORMATIONS
++comps2;
#endif
uint8_t b = shift_bwt2[k];
if (char_ex[b] != i) {
char_ex[b] = i;
++char_occ;
}
if (!run2[k])
break;
}
for (size_type k=i; todo2[k] and char_occ; ++k) {
#ifdef STUDY_INFORMATIONS
++comps2;
#endif
uint8_t b = bwt2[k];
if (char_ex[b] == i) {
size_type p = lcp_big[k];
push_back_m_index(p, b, m_list[m_mod2], m_chars[m_mod2], m_char_count[m_mod2]);
char_ex[b] = nn;
--char_occ;
}
if (!run2[k+1])
break;
}
lcp_big[ i ] = m2-1;
todo2[ i ] = 0;
// old_i = i;
}
}
}
}
store_to_cache(lcp_big, "lcp_big", config);
} // end phase 2
// std::cout<<"# merge lcp_sml and lcp_big"<<std::endl;
// phase 3: merge lcp_sml and lcp_big and save to disk
{
const size_type buffer_size = 1000000; // buffer_size has to be a multiple of 8!
int_vector_buffer<> lcp_big_buf(cache_file_name("lcp_big", config)); // file buffer containing the big LCP values
int_vector_buffer<8> lcp_sml_buf(cache_file_name("lcp_sml", config), std::ios::in, buffer_size); // file buffer containing the small LCP values
int_vector_buffer<> lcp_buf(cache_file_name(conf::KEY_LCP, config), std::ios::out, buffer_size, lcp_big_buf.width()); // buffer for the resulting LCP array
for (size_type i=0, i2=0; i < n; ++i) {
size_type l = lcp_sml_buf[i];
if (l >= m) { // if l >= m it is stored in lcp_big
l = lcp_big_buf[i2];
++i2;
}
lcp_buf[i] = l;
}
lcp_buf.close();
}
register_cache_file(conf::KEY_LCP, config);
#ifdef STUDY_INFORMATIONS
std::cout<<"# racs: "<<racs<<std::endl;
std::cout<<"# matches: "<<matches<<std::endl;
std::cout<<"# comps2: "<<comps2<<std::endl;
#endif
return;
}
void construct_lcp_goPHI(cache_config& config)
{
typedef int_vector<>::size_type size_type;
int_vector<8> text;
load_from_cache(text, conf::KEY_TEXT, config); // load text from file system
int_vector_buffer<> sa_buf(cache_file_name(conf::KEY_SA, config)); // initialize buffer for suffix array
const size_type n = sa_buf.size();
const size_type m = 254; // LCP[i] == m+1 corresp. to LCP[i]>= m+1; LCP[i] <= m corresp. to LCP[i] was calculated
if (1==n) {
int_vector<> lcp(1, 0);
store_to_cache(lcp, conf::KEY_LCP, config);
return;
}
size_type cnt_c[257] = {0}; // counter for each character in the text
size_type cnt_cc[257] = {0}; // prefix sum of the counter cnt_c
size_type omitted_c[257] = {0}; // counts the omitted occurrences for the second phase
size_type prev_occ_in_bwt[256] = {0}; // position of the previous occurrence of each character c in the bwt
for (size_type i=0; i<256; ++i) prev_occ_in_bwt[i] = (size_type)-1; // initialize the array with -1
unsigned char alphabet[257] = {0};
uint8_t sigma = 0;
size_type nn = 0; // n' for phase 2
// phase 1: calculate lcp_sml; memory consumption: 2n bytes (lcp_sml=n bytes, text=n bytes)
{
int_vector<8> lcp_sml(n, 0); // initialize array for small values of first phase; note lcp[0]=0
size_type done_cnt=0;
for (size_type i=0; i<n; ++i) { // initialize cnt_c
++cnt_c[text[i]+1];
}
for (int i=1; i<257; ++i) { // calculate sigma and initailize cnt_cc
if (cnt_c[i] > 0) {
alphabet[sigma++] = (unsigned char)(i-1);
}
cnt_cc[i] = cnt_c[i] + cnt_cc[i-1];
}
alphabet[sigma] = '\0';
{
int_vector_buffer<8> bwt_buf(cache_file_name(conf::KEY_BWT, config)); // initialize buffer of bwt
size_type sai_1 = sa_buf[0]; // store value of sa[i-1]
uint8_t bwti_1 = bwt_buf[0]; // store value of BWT[i-1]
lcp_sml[ cnt_cc[bwti_1]++ ] = 0; // lcp_sml[ LF[0] ] = 0
prev_occ_in_bwt[bwti_1] = 0; // init previous occurence of character BWT[0]
++omitted_c[alphabet[0]]; //
int_vector<64> rmq_stack(2*(m+10)); // initialize stack for m+10 elements representing (position, value)
rmq_stack[0] = 0; rmq_stack[1] = 0; // first element (-1, -1)
rmq_stack[2] = 1; rmq_stack[3] = 0; // second element (0, -1)
size_type rmq_end=3; // index of the value of the topmost element
uint8_t cur_c = alphabet[1];
for (size_type i=1, sai, cur_c_idx=1, cur_c_cnt=cnt_c[alphabet[1]+1]; i < n; ++i, --cur_c_cnt) {
uint8_t bwti = bwt_buf[i];
sai = sa_buf[i];
size_type lf = cnt_cc[bwti];
if (!cur_c_cnt) {// cur_c_cnt==0, if there is no more occurence of the current character
if (cur_c_cnt < sigma) {
cur_c_cnt = cnt_c[(cur_c=alphabet[++cur_c_idx])+1];
}
}
size_type l=0;
if (i >= cnt_cc[cur_c]) { // if the current lcp entry is not already done TODO: schleife von i bis cnt_cc[cur_c]
if (bwti == bwti_1 and lf < i) { // BWT[i]==BWT[i-1]
l = lcp_sml[lf] ? lcp_sml[lf]-1 : 0; // l = LCP[LF[i]]-1; l < m+1
if (l == m) { // if LCP[LF[i]] == m+1; otherwise LCP[LF[i]] < m+1 the result is correct
l += (text[sai_1+m] == text[sai+m]);
}
lcp_sml[i] = l;
++done_cnt;
} else { // BWT[i] != BWT[i-1] or LF[i] > i
if (lf < i)
l = lcp_sml[lf] ? lcp_sml[lf]-1 : 0;
while (text[sai_1+l] == text[sai+l] and l < m+1) {
++l;
}
lcp_sml[i] = l;
}
} else { // if already done
l = lcp_sml[i]; // load LCP value
}
// invariant: l <= m+1
// begin update rmq_stack
size_type x = l+1;
size_type j = rmq_end;
while (x <= rmq_stack[j]) j-=2; // pop all elements with value >= l
rmq_stack[++j] = i+1; // push position i
rmq_stack[++j] = x; // push value l
rmq_end = j; // update index of the value of the topmost element
if (lf > i) { // if LF[i] > i, we can calculate LCP[LF[i]] in constant time with rmq
++done_cnt;
// rmq query for lcp-values in the interval I=[prev_occ_in_bwt[BWT[i]]+1..i]
// rmq is linear in the stack size; can also be implemented with binary search on the stack
size_type x_pos = prev_occ_in_bwt[bwti]+2;
j = rmq_end-3;
while (x_pos <= rmq_stack[j]) j-=2; // search smallest value in the interval I
lcp_sml[lf] = rmq_stack[j+3] - (rmq_stack[j+3]==m+2); // if lcp-value equals m+1, we subtract 1
}
if (l > m) {
++nn;
} else
++omitted_c[cur_c];
prev_occ_in_bwt[bwti] = i; // update previous position information for character BWT[i]
++cnt_cc[bwti]; // update counter and therefore the LF information
sai_1 = sai; // update SA[i-1]
bwti_1 = bwti; // update BWT[i-1]
}
}
store_to_cache(lcp_sml, "lcp_sml", config);
}
// phase 2: calculate lcp_big with PHI algorithm on remaining entries of LCP
{
int_vector<> lcp_big(0, 0, bits::hi(n-1)+1);//nn, 0, bits::hi(n-1)+1);
{
memory_monitor::event("lcp-init-phi-begin");
size_type sa_n_1 = 0; // value for SA[n-1]
bit_vector todo(n,0); // bit_vector todo indicates which values are > m in lcp_sml
{
// initialize bit_vector todo
int_vector_buffer<8> lcp_sml_buf(cache_file_name("lcp_sml", config)); // load lcp_sml
for (size_type i=0; i < n; ++i) {
if (lcp_sml_buf[i] > m) {
todo[sa_buf[i]] = 1;
}
}
sa_n_1 = sa_buf[n-1];
}
rank_support_v<> todo_rank(&todo); // initialize rank for todo
const size_type bot = sa_n_1;
int_vector<> phi(nn, bot, bits::hi(n-1)+1); // phi
int_vector_buffer<8> bwt_buf(cache_file_name(conf::KEY_BWT, config)); // load BWT
int_vector_buffer<8> lcp_sml_buf(cache_file_name("lcp_sml", config)); // load lcp_sml
uint8_t b_1 = 0;
for (size_type i=0,sai_1=0; i < n; ++i) { // initialize phi
uint8_t b = bwt_buf[i]; // store BWT[i]
size_type sai = sa_buf[i];
if (lcp_sml_buf[i] > m and b != b_1) { // if i is a big irreducable value
phi[todo_rank(sai)] = sai_1;
} // otherwise phi is equal to bot
b_1 = b;
sai_1 = sai;
}
memory_monitor::event("lcp-init-phi-end");
memory_monitor::event("lcp-calc-plcp-begin");
for (size_type i=0, ii=0, l=m+1,p=0; i < n and ii<nn; ++i) { // execute compact Phi algorithm
if (todo[i]) {
if (i > 0 and todo[i-1])
l = l-1;
else
l = m+1;
if ((p=phi[ii]) != bot) {
while (text[i+l] == text[p+l]) ++l;
}
phi[ii++] = l;
}
}
memory_monitor::event("lcp-calc-plcp-end");
util::clear(text);
memory_monitor::event("lcp-calc-lcp-begin");
lcp_big.resize(nn);
for (size_type i = 0, ii = 0; i < n and ii<nn; ++i) {
if (lcp_sml_buf[i] > m) {
lcp_big[ii++] = phi[todo_rank(sa_buf[i])];
}
}
memory_monitor::event("lcp-calc-lcp-end");
}
store_to_cache(lcp_big, "lcp_big", config);
} // end phase 2
// std::cout<<"# merge lcp_sml and lcp_big"<<std::endl;
// phase 3: merge lcp_sml and lcp_big and save to disk
{
const size_type buffer_size = 1000000; // buffer_size has to be a multiple of 8!
int_vector_buffer<> lcp_big_buf(cache_file_name("lcp_big", config)); // file buffer containing the big LCP values
int_vector_buffer<8> lcp_sml_buf(cache_file_name("lcp_sml", config), std::ios::in, buffer_size); // file buffer containing the small LCP values
int_vector_buffer<> lcp_buf(cache_file_name(conf::KEY_LCP, config), std::ios::out, buffer_size, lcp_big_buf.width()); // file buffer for the resulting LCP array
for (size_type i=0, i2=0; i < n; ++i) {
size_type l = lcp_sml_buf[i];
if (l > m) { // if l > m it is stored in lcp_big
l = lcp_big_buf[i2];
++i2;
}
lcp_buf[i] = l;
}
lcp_big_buf.close(true); // close buffer and remove file
lcp_sml_buf.close(true); // close buffer and remove file
}
register_cache_file(conf::KEY_LCP, config);
return;
}
void construct_lcp_bwt_based(cache_config& config)
{
typedef int_vector<>::size_type size_type;
std::string lcp_file = cache_file_name(conf::KEY_LCP, config);
// create WT
memory_monitor::event("lcp-bwt-create-wt-huff-begin");
wt_huff<bit_vector, rank_support_v<>, select_support_scan<1>, select_support_scan<0>> wt_bwt;
construct(wt_bwt, cache_file_name(conf::KEY_BWT, config));
uint64_t n = wt_bwt.size();
memory_monitor::event("lcp-bwt-create-wt-huff-end");
// init
memory_monitor::event("lcp-bwt-init-begin");
size_type lcp_value = 0; // current LCP value
size_type lcp_value_offset = 0; // Largest LCP value in LCP array, that was written on disk
size_type phase = 0; // Count how often the LCP array was written on disk
size_type intervals = 0; // number of intervals which are currently stored
size_type intervals_new = 0; // number of new intervals
std::queue<size_type> q; // Queue for storing the intervals
std::vector<bit_vector> dict(2); // bit_vector for storing the intervals
size_type source = 0, target = 1; // Defines which bit_vector is source and which is target
bool queue_used = true;
size_type use_queue_and_wt = n/2048; // if intervals < use_queue_and_wt, then use queue and wavelet tree
// else use dictionary and wavelet tree
size_type quantity; // quantity of characters in interval
std::vector<unsigned char> cs(wt_bwt.sigma); // list of characters in the interval
std::vector<size_type> rank_c_i(wt_bwt.sigma);// number of occurrence of character in [0 .. i-1]
std::vector<size_type> rank_c_j(wt_bwt.sigma);// number of occurrence of character in [0 .. j-1]
// Calculate how many bit are for each lcp value available, to limit the memory usage to 20n bit = 2,5n byte, use at moste 8 bit
size_type bb = (n*20-size_in_bytes(wt_bwt)*8*1.25-5*n)/n; // 20n - size of wavelet tree * 1.25 for rank support - 5n for bit arrays - n for index_done array
if (n*20 < size_in_bytes(wt_bwt)*8*1.25+5*n) {
bb = 6;
}
bb = std::min(bb, (size_type)8);
size_type lcp_value_max = (1ULL<<bb)-1; // Largest LCP value that can be stored into the LCP array
size_type space_in_bit_for_lcp = n*bb; // Space for the LCP array in main memory
#ifdef STUDY_INFORMATIONS
std::cout << "# l=" << n << " b=" << (int)bb << " lcp_value_max=" << lcp_value_max << " size_in_bytes(wt_bwt<v,bs,bs>)=" << size_in_bytes(wt_bwt) << std::endl;
#endif
// init partial_lcp
int_vector<> partial_lcp(n, 0, bb); // LCP array
// init index_done
bit_vector index_done(n+1, false); // bit_vector indicates if entry LCP[i] is amend
rank_support_v<> ds_rank_support; // Rank support for bit_vector index_done
// create C-array
std::vector<size_type> C; // C-Array: C[i] = number of occurrences of characters < i in the input
create_C_array(C, wt_bwt);
memory_monitor::event("lcp-bwt-init-begin-end");
// calculate lcp
memory_monitor::event("lcp-bwt-calc-values-begin");
// calculate first intervals
partial_lcp[0] = 0;
index_done[0] = true;
interval_symbols(wt_bwt, 0, n, quantity, cs, rank_c_i, rank_c_j);
for (size_type i=0; i<quantity; ++i) {
unsigned char c = cs[i];
size_type a_new = C[c] + rank_c_i[i];
size_type b_new = C[c] + rank_c_j[i];
// Save LCP value if not seen before
if (!index_done[b_new]) {
if (b_new < n) partial_lcp[b_new] = lcp_value;
index_done[b_new] = true;
// Save interval
q.push(a_new); q.push(b_new);
++intervals;
}
}
++lcp_value;
// calculate LCP values phase by phase
while (intervals) {
if (intervals < use_queue_and_wt && !queue_used) {
memory_monitor::event("lcp-bwt-bitvec2queue-begin");
util::clear(dict[target]);
// copy from bitvector to queue
size_type a2 = util::next_bit(dict[source], 0);
size_type b2 = util::next_bit(dict[source], a2+1);
while (b2 < dict[source].size()) {
q.push((a2-1)>>1); q.push(b2>>1);
// get next interval
a2 = util::next_bit(dict[source], b2+1);
b2 = util::next_bit(dict[source], a2+1);
}
util::clear(dict[source]);
memory_monitor::event("lcp-bwt-bitvec2queue-end");
}
if (intervals >= use_queue_and_wt && queue_used) {
memory_monitor::event("lcp-bwt-queue2bitvec-begin");
dict[source].resize(2*(n+1));
util::set_to_value(dict[source], 0);
// copy from queue to bitvector
while (!q.empty()) {
dict[source][(q.front()<<1)+1 ] = 1; q.pop();
dict[source][(q.front()<<1) ] = 1; q.pop();
}
dict[target].resize(2*(n+1));
util::set_to_value(dict[target], 0);
memory_monitor::event("lcp-bwt-queue2bitvec-end");
}
if (intervals < use_queue_and_wt) {
queue_used = true;
intervals_new = 0;
while (intervals) {
// get next interval
size_type a = q.front(); q.pop();
size_type b = q.front(); q.pop();
--intervals;
interval_symbols(wt_bwt, a, b, quantity, cs, rank_c_i, rank_c_j);
for (size_type i=0; i<quantity; ++i) {
unsigned char c = cs[i];
size_type a_new = C[c] + rank_c_i[i];
size_type b_new = C[c] + rank_c_j[i];
// Save LCP value if not seen before
if (!index_done[b_new] and phase == 0) {
partial_lcp[b_new] = lcp_value;
index_done[b_new] = true;
// Save interval
q.push(a_new); q.push(b_new);
++intervals_new;
} else if (!index_done[b_new]) {
size_type insert_pos = b_new-ds_rank_support.rank(b_new);
if (!partial_lcp[insert_pos]) {
partial_lcp[insert_pos] = lcp_value-lcp_value_offset;
// Save interval
q.push(a_new); q.push(b_new);
++intervals_new;
}
}
}
}
intervals = intervals_new;
} else {
queue_used = false;
intervals = 0;
// get next interval
size_type a2 = util::next_bit(dict[source], 0);
size_type b2 = util::next_bit(dict[source], a2+1);
while (b2 < dict[source].size()) {
interval_symbols(wt_bwt, ((a2-1)>>1), (b2>>1), quantity, cs, rank_c_i, rank_c_j);
for (size_type i=0; i<quantity; ++i) {
unsigned char c = cs[i];
size_type a_new = C[c] + rank_c_i[i];
size_type b_new = C[c] + rank_c_j[i];
// Save LCP value if not seen before
if (!index_done[b_new] and phase == 0) {
partial_lcp[b_new] = lcp_value;
index_done[b_new] = true;
// Save interval
dict[target][(a_new<<1)+1] = 1;
dict[target][(b_new<<1) ] = 1;
++intervals;
} else if (!index_done[b_new]) {
size_type insert_pos = b_new-ds_rank_support.rank(b_new);
if (!partial_lcp[insert_pos]) {
partial_lcp[insert_pos] = lcp_value-lcp_value_offset;
// Save interval
dict[target][(a_new<<1)+1] = 1;
dict[target][(b_new<<1) ] = 1;
++intervals;
}
}
}
// get next interval
a2 = util::next_bit(dict[source], b2+1);
b2 = util::next_bit(dict[source], a2+1);
}
std::swap(source, target);
util::set_to_value(dict[target], 0);
}
++lcp_value;
if (lcp_value>=lcp_value_max) {
memory_monitor::event("lcp-bwt-write-to-file-begin");
if (phase) {
insert_lcp_values(partial_lcp, index_done, lcp_file, lcp_value, lcp_value_offset);
} else {
store_to_file(partial_lcp, lcp_file);
}
memory_monitor::event("lcp-bwt-write-to-file-end");
memory_monitor::event("lcp-bwt-resize-variables-begin");
util::init_support(ds_rank_support, &index_done); // Create rank support
// Recalculate lcp_value_max and resize partial_lcp
lcp_value_offset = lcp_value_max-1;
size_type remaining_lcp_values = index_done.size()-ds_rank_support.rank(index_done.size());
uint8_t int_width_new = std::min(space_in_bit_for_lcp / remaining_lcp_values , (size_type)bits::hi(n-1)+1);
lcp_value_max = lcp_value_offset + (1ULL<<int_width_new);
#ifdef STUDY_INFORMATIONS
std::cout << "# l=" << remaining_lcp_values << " b=" << (int)int_width_new << " lcp_value_max=" << lcp_value_max << std::endl;
#endif
partial_lcp.width(int_width_new);
partial_lcp.resize(remaining_lcp_values);
util::set_to_value(partial_lcp, 0);
++phase;
memory_monitor::event("lcp-bwt-resize-variables-end");
}
}
memory_monitor::event("lcp-bwt-calc-values-end");
// merge to file
memory_monitor::event("lcp-bwt-merge-to-file-begin");
if (phase) {
insert_lcp_values(partial_lcp, index_done, lcp_file, lcp_value, lcp_value_offset);
} else {
store_to_file(partial_lcp, lcp_file);
}
register_cache_file(conf::KEY_LCP, config);
memory_monitor::event("lcp-bwt-merge-to-file-end");
}
void construct_lcp_bwt_based2(cache_config& config)
{
typedef int_vector<>::size_type size_type;
uint64_t n; // Input length
size_type buffer_size=1000000; // Size of the buffer
size_type lcp_value = 0; // current LCP value
std::string tmp_lcp_file = cache_file_name(conf::KEY_LCP, config)+"_tmp";
// (1) Calculate LCP-Positions-Array: For each lcp_value (in ascending order) all its occurrences (in any order) in the lcp array
{
memory_monitor::event("lcp-bwt2-create-wt-huff-begin");
wt_huff<bit_vector, rank_support_v<>, select_support_scan<1>, select_support_scan<0>> wt_bwt;
construct(wt_bwt, cache_file_name(conf::KEY_BWT, config));
n = wt_bwt.size();
memory_monitor::event("lcp-bwt2-create-wt-huff-begin");
// Declare needed variables
memory_monitor::event("lcp-bwt2-init-begin");
size_type intervals = 0; // Number of intervals which are currently stored
size_type intervals_new = 0; // Number of new intervals
std::queue<size_type> q; // Queue for storing the intervals
std::vector<bit_vector> dict(2); // bit_vector for storing the intervals
size_type source = 0, target = 1; // Defines which bit_vector is source and which is target
bool queue_used = true; // Defines whether a queue (true) or the bit_vectors (false) was used to store intervals
size_type use_queue_and_wt = n/2048; // if intervals < use_queue_and_wt, then use queue and wavelet tree
// else use dictionary and wavelet tree
size_type quantity; // quantity of characters in interval
std::vector<unsigned char> cs(wt_bwt.sigma); // list of characters in the interval
std::vector<size_type> rank_c_i(wt_bwt.sigma); // number of occurrence of character in [0 .. i-1]
std::vector<size_type> rank_c_j(wt_bwt.sigma); // number of occurrence of character in [0 .. j-1]
// External storage of LCP-Positions-Array
bool new_lcp_value = false;
uint8_t int_width = bits::hi(n)+2;
int_vector_buffer<> lcp_positions_buf(tmp_lcp_file, std::ios::out, buffer_size, int_width); // Create buffer for positions of LCP entries
size_type idx_out_buf = 0;
bit_vector index_done(n+1, 0); // Bitvector which is true, if corresponding LCP value was already calculated
// Create C-array
std::vector<size_type> C; // C-Array: C[i] = number of occurrences of characters < i in the input
create_C_array(C, wt_bwt);
memory_monitor::event("lcp-bwt2-init-end");
// Calculate LCP-Positions-Array
memory_monitor::event("lcp-bwt2-calc-values-begin");
// Save position of first LCP-value
lcp_positions_buf[idx_out_buf++] = 0;
if (new_lcp_value) {
lcp_positions_buf[idx_out_buf-1] = lcp_positions_buf[idx_out_buf-1] + n;
new_lcp_value = false;
}
index_done[0] = true;
// calculate first intervals
interval_symbols(wt_bwt, 0, n, quantity, cs, rank_c_i, rank_c_j);
for (size_type i=0; i<quantity; ++i) {
unsigned char c = cs[i];
size_type a_new = C[c] + rank_c_i[i];
size_type b_new = C[c] + rank_c_j[i];
// Save LCP value and corresponding interval if not seen before
if (!index_done[b_new]) {
if (b_new < n) {
// Save position of LCP-value
lcp_positions_buf[idx_out_buf++] = b_new;
}
index_done[b_new] = true;
// Save interval
q.push(a_new);
q.push(b_new);
++intervals;
}
}
++lcp_value;
new_lcp_value = true;
// Calculate LCP positions
while (intervals) {
if (intervals < use_queue_and_wt && !queue_used) {
memory_monitor::event("lcp-bwt2-bitvec2queue-begin");
util::clear(dict[target]);
// Copy from bitvector to queue
size_type a2 = util::next_bit(dict[source], 0);
size_type b2 = util::next_bit(dict[source], a2+1);
while (b2 < dict[source].size()) {
q.push((a2-1)>>1);
q.push(b2>>1);
// Get next interval
a2 = util::next_bit(dict[source], b2+1);
b2 = util::next_bit(dict[source], a2+1);
}
util::clear(dict[source]);
memory_monitor::event("lcp-bwt2-bitvec2queue-end");
}
if (intervals >= use_queue_and_wt && queue_used) {
memory_monitor::event("lcp-bwt2-queue2bitvec-begin");
dict[source].resize(2*(n+1));
util::set_to_value(dict[source], 0);
// Copy from queue to bitvector
while (!q.empty()) {
dict[source][(q.front()<<1)+1 ] = 1; q.pop();
dict[source][(q.front()<<1) ] = 1; q.pop();
}
dict[target].resize(2*(n+1));
util::set_to_value(dict[target], 0);
memory_monitor::event("lcp-bwt2-queue2bitvec-end");
}
if (intervals < use_queue_and_wt) {
queue_used = true;
intervals_new = 0;
while (intervals) {
// Get next interval
size_type a = q.front(); q.pop();
size_type b = q.front(); q.pop();
--intervals;
interval_symbols(wt_bwt, a, b, quantity, cs, rank_c_i, rank_c_j);
for (size_type i=0; i<quantity; ++i) {
unsigned char c = cs[i];
size_type a_new = C[c] + rank_c_i[i];
size_type b_new = C[c] + rank_c_j[i];
// Save LCP value and corresponding interval if not seen before
if (!index_done[b_new]) {
// Save position of LCP-value
lcp_positions_buf[idx_out_buf++] = b_new;
if (new_lcp_value) {
// Mark new LCP-value
lcp_positions_buf[idx_out_buf-1] = lcp_positions_buf[idx_out_buf-1]+n;
new_lcp_value = false;
}
index_done[b_new] = true;
// Save interval
q.push(a_new);
q.push(b_new);
++intervals_new;
}
}
}
intervals = intervals_new;
} else {
queue_used = false;
intervals = 0;
// get next interval
size_type a2 = util::next_bit(dict[source], 0);
size_type b2 = util::next_bit(dict[source], a2+1);
while (b2 < dict[source].size()) {
interval_symbols(wt_bwt, ((a2-1)>>1), (b2>>1), quantity, cs, rank_c_i, rank_c_j);
for (size_type i=0; i<quantity; ++i) {
unsigned char c = cs[i];
size_type a_new = C[c] + rank_c_i[i];
size_type b_new = C[c] + rank_c_j[i];
// Save LCP value if not seen before
if (!index_done[b_new]) {
// Save position of LCP-value
lcp_positions_buf[idx_out_buf++] = b_new;
if (new_lcp_value) {
// Mark new LCP-value
lcp_positions_buf[idx_out_buf-1] = lcp_positions_buf[idx_out_buf-1]+n;
new_lcp_value = false;
}
index_done[b_new] = true;
// Save interval
dict[target][(a_new<<1)+1] = 1;
dict[target][(b_new<<1) ] = 1;
++intervals;
}
}
// get next interval
a2 = util::next_bit(dict[source], b2+1);
b2 = util::next_bit(dict[source], a2+1);
}
std::swap(source, target);
util::set_to_value(dict[target], 0);
}
++lcp_value;
new_lcp_value = true;
}
memory_monitor::event("lcp-bwt2-calc-values-end");
lcp_positions_buf.close();
}
// (2) Insert LCP entires into LCP array
{
memory_monitor::event("lcp-bwt2-reordering-begin");
int_vector_buffer<> lcp_positions(tmp_lcp_file, std::ios::in, buffer_size);
uint8_t int_width = bits::hi(lcp_value+1)+1; // How many bits are needed for one lcp_value?
// Algorithm does r=ceil(int_width/8) runs over LCP-Positions-Array.
// So in each run k>=(n/r) values of the lcp array must be calculated.
// Because k has to be a multiple of 8, we choose number_of_values = (k+16) - ((k+16)%8)
size_type number_of_values = ((n / ((int_width-1ULL)/8 + 1) + 16) & (~(0x7ULL)));
std::string lcp_file = cache_file_name(conf::KEY_LCP, config);
int_vector_buffer<> lcp_array(lcp_file, std::ios::out, number_of_values*int_width/8, int_width); // Create Output Buffer
number_of_values = lcp_array.buffersize()*8/int_width;
for (size_type position_begin=0, position_end = number_of_values; position_begin<n and number_of_values>0; position_begin=position_end, position_end+=number_of_values) {
#ifdef STUDY_INFORMATIONS
std::cout << "# number_of_values=" << number_of_values << " fill lcp_values with " << position_begin << " <= position <" << position_end << ", each lcp-value has " << (int)int_width << " bit, lcp_value_max=" << lcp_value << " n=" << n << std::endl;
#endif
lcp_value = 0;
for (size_type i=0; i < n; ++i) {
size_type position = lcp_positions[i];
if (position>n) {
position -= n;
++lcp_value;
}
if (position_begin <= position and position < position_end) {
lcp_array[position] = lcp_value;
}
}
}
// Close file
lcp_array.close();
register_cache_file(conf::KEY_LCP, config);
lcp_positions.close(true); // close buffer and remove file
memory_monitor::event("lcp-bwt2-reordering-end");
} // End of phase 2
}
//void check_lcp(std::string lcpI, std::string lcpII, std::string id)
//{
// typedef int_vector<>::size_type size_type;
// int_vector<> lcp1,lcp2;
// load_from_file(lcp1, (lcpI+"_"+id));
// load_from_file(lcp2, (lcpII+"_"+id));
// if (lcp1 != lcp2) {
// std::cout<<"lcp results of "<< lcpI << "and " <<lcpII<<" differ"<<std::endl;
// for (size_type i=0, cnt=0; i<lcp1.size() and cnt<10; ++i) {
// if (lcp1[i] != lcp2[i]) {
// std::cout<<"i="<<i<<" "<<lcpI<<"[i]="<<lcp1[i]<<" "<<lcpII<<"[i]="<<lcp2[i]<<std::endl;
// ++cnt;
// }
// }
// }
//}
//
} // end namespace sdsl
|