1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
/*!\file memory_management.hpp
\brief memory_management.hpp contains two function for allocating and deallocating memory
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_MEMORY_MANAGEMENT
#define INCLUDED_SDSL_MEMORY_MANAGEMENT
#include "uintx_t.hpp"
#include "util.hpp"
#include <map>
#include <iostream>
#include <cstdlib>
#include <mutex>
#include <chrono>
#include <cstring>
#include <set>
#include <cstddef>
#include <stack>
#include <vector>
#include "config.hpp"
#include <fcntl.h>
#ifdef MSVC_COMPILER
// windows.h has min/max macro which causes problems when using std::min/max
#define NOMINMAX
#include <windows.h>
#include <io.h>
#else
#include <sys/mman.h>
#endif
namespace sdsl
{
class memory_monitor;
template<format_type F>
void write_mem_log(std::ostream& out, const memory_monitor& m);
class memory_monitor
{
public:
using timer = std::chrono::high_resolution_clock;
struct mm_alloc {
timer::time_point timestamp;
int64_t usage;
mm_alloc(timer::time_point t, int64_t u) : timestamp(t), usage(u) {};
};
struct mm_event {
std::string name;
std::vector<mm_alloc> allocations;
mm_event(std::string n, int64_t usage) : name(n)
{
allocations.emplace_back(timer::now(), usage);
};
bool operator< (const mm_event& a) const
{
if (a.allocations.size() && this->allocations.size()) {
if (this->allocations[0].timestamp == a.allocations[0].timestamp) {
return this->allocations.back().timestamp < a.allocations.back().timestamp;
} else {
return this->allocations[0].timestamp < a.allocations[0].timestamp;
}
}
return true;
}
};
struct mm_event_proxy {
bool add;
timer::time_point created;
mm_event_proxy(const std::string& name, int64_t usage, bool a) : add(a)
{
if (add) {
auto& m = the_monitor();
std::lock_guard<util::spin_lock> lock(m.spinlock);
m.event_stack.emplace(name, usage);
}
}
~mm_event_proxy()
{
if (add) {
auto& m = the_monitor();
std::lock_guard<util::spin_lock> lock(m.spinlock);
auto& cur = m.event_stack.top();
auto cur_time = timer::now();
cur.allocations.emplace_back(cur_time, m.current_usage);
m.completed_events.emplace_back(std::move(cur));
m.event_stack.pop();
// add a point to the new "top" with the same memory
// as before but just ahead in time
if (!m.event_stack.empty()) {
if (m.event_stack.top().allocations.size()) {
auto last_usage = m.event_stack.top().allocations.back().usage;
m.event_stack.top().allocations.emplace_back(cur_time, last_usage);
}
}
}
}
};
std::chrono::milliseconds log_granularity = std::chrono::milliseconds(20ULL);
int64_t current_usage = 0;
bool track_usage = false;
std::vector<mm_event> completed_events;
std::stack<mm_event> event_stack;
timer::time_point start_log;
timer::time_point last_event;
util::spin_lock spinlock;
private:
// disable construction of the object
memory_monitor() {};
~memory_monitor()
{
if (track_usage) {
stop();
}
}
memory_monitor(const memory_monitor&) = delete;
memory_monitor& operator=(const memory_monitor&) = delete;
private:
static memory_monitor& the_monitor()
{
static memory_monitor m;
return m;
}
public:
static void granularity(std::chrono::milliseconds ms)
{
auto& m = the_monitor();
m.log_granularity = ms;
}
static int64_t peak()
{
auto& m = the_monitor();
int64_t max = 0;
for (auto events : m.completed_events) {
for (auto alloc : events.allocations) {
if (max < alloc.usage) {
max = alloc.usage;
}
}
}
return max;
}
static void start()
{
auto& m = the_monitor();
m.track_usage = true;
// clear if there is something there
if (m.completed_events.size()) {
m.completed_events.clear();
}
while (m.event_stack.size()) {
m.event_stack.pop();
}
m.start_log = timer::now();
m.current_usage = 0;
m.last_event = m.start_log;
m.event_stack.emplace("unknown", 0);
}
static void stop()
{
auto& m = the_monitor();
while (!m.event_stack.empty()) {
m.completed_events.emplace_back(std::move(m.event_stack.top()));
m.event_stack.pop();
}
m.track_usage = false;
}
static void record(int64_t delta)
{
auto& m = the_monitor();
if (m.track_usage) {
std::lock_guard<util::spin_lock> lock(m.spinlock);
auto cur = timer::now();
if (m.last_event + m.log_granularity < cur) {
m.event_stack.top().allocations.emplace_back(cur, m.current_usage);
m.current_usage = m.current_usage + delta;
m.event_stack.top().allocations.emplace_back(cur, m.current_usage);
m.last_event = cur;
} else {
if (m.event_stack.top().allocations.size()) {
m.current_usage = m.current_usage + delta;
m.event_stack.top().allocations.back().usage = m.current_usage;
m.event_stack.top().allocations.back().timestamp = cur;
}
}
}
}
static mm_event_proxy event(const std::string& name)
{
auto& m = the_monitor();
if (m.track_usage) {
return mm_event_proxy(name, m.current_usage, true);
}
return mm_event_proxy(name, m.current_usage, false);
}
template<format_type F>
static void write_memory_log(std::ostream& out)
{
write_mem_log<F>(out, the_monitor());
}
};
#pragma pack(push, 1)
typedef struct mm_block {
size_t size;
struct mm_block* next;
struct mm_block* prev;
} mm_block_t;
typedef struct bfoot {
size_t size;
} mm_block_foot_t;
#pragma pack(pop)
#ifndef MSVC_COMPILER
class hugepage_allocator
{
private:
uint8_t* m_base = nullptr;
mm_block_t* m_first_block = nullptr;
uint8_t* m_top = nullptr;
size_t m_total_size = 0;
std::multimap<size_t, mm_block_t*> m_free_large;
private:
size_t determine_available_hugepage_memory();
void coalesce_block(mm_block_t* block);
void split_block(mm_block_t* bptr, size_t size);
uint8_t* hsbrk(size_t size);
mm_block_t* new_block(size_t size);
void remove_from_free_set(mm_block_t* block);
void insert_into_free_set(mm_block_t* block);
mm_block_t* find_free_block(size_t size_in_bytes);
mm_block_t* last_block();
void print_heap();
public:
void init(SDSL_UNUSED size_t size_in_bytes = 0)
{
#ifdef MAP_HUGETLB
if (size_in_bytes == 0) {
size_in_bytes = determine_available_hugepage_memory();
}
m_total_size = size_in_bytes;
m_base = (uint8_t*)mmap(nullptr, m_total_size,
(PROT_READ | PROT_WRITE),
(MAP_HUGETLB | MAP_ANONYMOUS | MAP_PRIVATE), 0, 0);
if (m_base == MAP_FAILED) {
throw std::system_error(ENOMEM, std::system_category(),
"hugepage_allocator could not allocate hugepages");
} else {
// init the allocator
m_top = m_base;
m_first_block = (mm_block_t*)m_base;
}
#else
throw std::system_error(ENOMEM, std::system_category(),
"hugepage_allocator: MAP_HUGETLB / hugepage support not available");
#endif
}
void* mm_realloc(void* ptr, size_t size);
void* mm_alloc(size_t size_in_bytes);
void mm_free(void* ptr);
bool in_address_space(void* ptr)
{
// check if ptr is in the hugepage address space
if (ptr == nullptr) {
return true;
}
if (ptr >= m_base && ptr < m_top) {
return true;
}
return false;
}
static hugepage_allocator& the_allocator()
{
static hugepage_allocator a;
return a;
}
};
#endif
class memory_manager
{
private:
bool hugepages = false;
private:
static memory_manager& the_manager()
{
static memory_manager m;
return m;
}
public:
static uint64_t* alloc_mem(size_t size_in_bytes)
{
#ifndef MSVC_COMPILER
auto& m = the_manager();
if (m.hugepages) {
return (uint64_t*)hugepage_allocator::the_allocator().mm_alloc(size_in_bytes);
}
#endif
return (uint64_t*)calloc(size_in_bytes, 1);
}
static void free_mem(uint64_t* ptr)
{
#ifndef MSVC_COMPILER
auto& m = the_manager();
if (m.hugepages and hugepage_allocator::the_allocator().in_address_space(ptr)) {
hugepage_allocator::the_allocator().mm_free(ptr);
return;
}
#endif
std::free(ptr);
}
static uint64_t* realloc_mem(uint64_t* ptr, size_t size)
{
#ifndef MSVC_COMPILER
auto& m = the_manager();
if (m.hugepages and hugepage_allocator::the_allocator().in_address_space(ptr)) {
return (uint64_t*)hugepage_allocator::the_allocator().mm_realloc(ptr, size);
}
#endif
return (uint64_t*)realloc(ptr, size);
}
public:
static void use_hugepages(size_t bytes = 0)
{
#ifndef MSVC_COMPILER
auto& m = the_manager();
hugepage_allocator::the_allocator().init(bytes);
m.hugepages = true;
#else
throw std::runtime_error("hugepages not support on MSVC_COMPILER");
#endif
}
template<class t_vec>
static void resize(t_vec& v, const typename t_vec::size_type size)
{
uint64_t old_size_in_bytes = ((v.m_size + 63) >> 6) << 3;
uint64_t new_size_in_bytes = ((size + 63) >> 6) << 3;
bool do_realloc = old_size_in_bytes != new_size_in_bytes;
v.m_size = size;
if (do_realloc || v.m_data == nullptr) {
// Note that we allocate 8 additional bytes if m_size % 64 == 0.
// We need this padding since rank data structures do a memory
// access to this padding to answer rank(size()) if size()%64 ==0.
// Note that this padding is not counted in the serialize method!
size_t allocated_bytes = (size_t)(((size + 64) >> 6) << 3);
v.m_data = memory_manager::realloc_mem(v.m_data, allocated_bytes);
if (allocated_bytes != 0 && v.m_data == nullptr) {
throw std::bad_alloc();
}
// update and fill with 0s
if (v.bit_size() < v.capacity()) {
uint8_t len = (uint8_t)(v.capacity() - v.bit_size());
uint8_t in_word_offset = (uint8_t)(v.bit_size() & 0x3F);
bits::write_int(v.m_data + (v.bit_size() >> 6), 0, in_word_offset, len);
}
if (((v.m_size) % 64) == 0) { // initialize unreachable bits with 0
v.m_data[v.m_size / 64] = 0;
}
// update stats
if (do_realloc) {
memory_monitor::record((int64_t)new_size_in_bytes - (int64_t)old_size_in_bytes);
}
}
}
template<class t_vec>
static void clear(t_vec& v)
{
int64_t size_in_bytes = ((v.m_size + 63) >> 6) << 3;
// remove mem
memory_manager::free_mem(v.m_data);
v.m_data = nullptr;
// update stats
if (size_in_bytes) {
memory_monitor::record(size_in_bytes*-1);
}
}
static int open_file_for_mmap(std::string& filename, std::ios_base::openmode mode) {
#ifdef MSVC_COMPILER
int fd = -1;
if (!(mode&std::ios_base::out)) _sopen_s(&fd,filename.c_str(), _O_BINARY| _O_RDONLY, _SH_DENYNO, _S_IREAD);
else _sopen_s(&fd, filename.c_str(), _O_BINARY | _O_RDWR, _SH_DENYNO, _S_IREAD | _S_IWRITE);
return fd;
#else
if (!(mode&std::ios_base::out)) return open(filename.c_str(), O_RDONLY);
else return open(filename.c_str(), O_RDWR);
#endif
return -1;
}
static void* mmap_file(int fd,uint64_t file_size, std::ios_base::openmode mode) {
#ifdef MSVC_COMPILER
HANDLE fh = (HANDLE)_get_osfhandle(fd);
if (fh == INVALID_HANDLE_VALUE) {
return nullptr;
}
HANDLE fm;
if (!(mode&std::ios_base::out)) { // read only?
fm = CreateFileMapping(fh, NULL, PAGE_READONLY, 0, 0, NULL);
} else fm = CreateFileMapping(fh, NULL, PAGE_READWRITE, 0, 0, NULL);
if (fm == NULL) {
return nullptr;
}
void* map = nullptr;
if (!(mode&std::ios_base::out)) { // read only?
map = MapViewOfFile(fm, FILE_MAP_READ, 0, 0, file_size);
} else map = MapViewOfFile(fm, FILE_MAP_WRITE | FILE_MAP_READ, 0, 0, file_size);
// we can close the file handle before we unmap the view: (see UnmapViewOfFile Doc)
// Although an application may close the file handle used to create a file mapping object,
// the system holds the corresponding file open until the last view of the file is unmapped.
// Files for which the last view has not yet been unmapped are held open with no sharing restrictions.
CloseHandle(fm);
return map;
#else
void* map = nullptr;
if (!(mode&std::ios_base::out)) map = mmap(NULL,file_size,PROT_READ,MAP_SHARED,fd, 0);
else map = mmap(NULL,file_size,PROT_READ | PROT_WRITE,MAP_SHARED,fd, 0);
if(map == MAP_FAILED) map = nullptr; // unify windows and unix error behaviour
return map;
#endif
return nullptr;
}
static int mem_unmap(void* addr,const uint64_t size) {
#ifdef MSVC_COMPILER
if (UnmapViewOfFile(addr)) return 0;
return -1;
#else
return munmap(addr, size);
#endif
return -1;
}
static int close_file_for_mmap(int fd) {
#ifdef MSVC_COMPILER
return _close(fd);
#else
return close(fd);
#endif
return -1;
}
static int truncate_file_mmap(int fd,const uint64_t new_size) {
#ifdef MSVC_COMPILER
auto ret = _chsize_s(fd,new_size);
if(ret != 0) ret = -1;
return ret;
#else
return ftruncate(fd,new_size);
#endif
return -1;
}
};
} // end namespace
#endif
|