File: ExtractAbbreviations.java

package info (click to toggle)
libsecondstring-java 0.1~dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 764 kB
  • sloc: java: 9,592; xml: 114; makefile: 6
file content (295 lines) | stat: -rw-r--r-- 9,939 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
package com.wcohen.ss.expt;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

import com.wcohen.ss.abbvGapsHmm.Acronym;
import com.wcohen.ss.abbvGapsHmm.AlignmentPredictionModel;

/**
 * Extracts abbreviation pairs (<<i>short-form</i>, <i>long-form</i>>) from text using an 'abbreviation distance metric' which evaluates 
 * the probability of a short-form string being an abbreviation/acronym of another long-form string. 
 * The probability is given by an HMM-based alignment between the two strings.
 * <br><br>
 * Sample command line:<br>
 * <code> java com.wcohen.ss.expt.ExtractAbbreviations ./train/abbvAlign_corpus.txt experiment_name </code>
 * <br><br>
 * Citation: Dana Movshovitz-Attias and William Cohen, Alignment-HMM-based Extraction of Abbreviations from Biomedical Text, 2012, BioNLP in NAACL
 *
 * @see com.wcohen.ss.AbbreviationAlignment
 * @author Dana Movshovitz-Attias
 *
 */
public class ExtractAbbreviations {
	public class Stats {
		public int FN, FP, TP, TN;
		public float precision, recall, F1;
		public Stats(){
			FN = 0;
			FP = 0;
			TN = 0;
			FP = 0;
			precision = 0f;
			recall = 0f;
			F1 = 0f;
		}
	}
	
	public static String SEPARATOR = "#_#";
	
	private String _input;
	private String _output;
	private String _gold;
	private String _train = "./train";
	
	private AlignmentPredictionModel _alignPredictor = null;
	
	private Map<String, Integer> _strToID = null;
	private Map<Integer, Set<String>> _idToStr = null;
	private Map<String, String> _strToSrc = null;
	
	public ExtractAbbreviations(String input, String output, String train, String gold) {
		_input = input;
		_output = output;
		_train = train;
		_gold = gold;
	}
	
	public void run() throws IOException {
		loadPredictor();
		setTrainDir(_train);
		
		predictAndTest(AlignmentPredictionModel.loadTrainingCorpus(_input), AlignmentPredictionModel.loadLabels(_gold));
	}
	
	protected void mkdir(String dir) {
		File f = new File(dir);
		f.mkdirs();
	}
	
	protected void setTrainDir(String trainDir) {
		_alignPredictor.setTrainingDataDir(trainDir+"/");
		_alignPredictor.setModelParamsFile(trainDir+"/hmmModelParams.txt");
		_alignPredictor.trainIfNeeded();
	}
	
	protected AlignmentPredictionModel loadPredictor(){
		if(_alignPredictor == null){
			try {
				_alignPredictor = new AlignmentPredictionModel();
			} catch (IOException e) {
				System.err.println("Unable to load AlignmentPredictionModel");
				e.printStackTrace();
				System.exit(1);
			}
		}
		return _alignPredictor;
	}
	
	protected void predictAndTest(List<String> corpus, List<Map<String, String>> trueLabels) throws IOException{
		Stats totalStats = new Stats();
		
		String output_abbvs = "./"+_output+"_abbvs";
		String output_strings = "./"+_output+"_strings";
		BufferedWriter bw_abbvs = new BufferedWriter(new FileWriter(output_abbvs));
		BufferedWriter bw_strings = new BufferedWriter(new FileWriter(output_strings));
		
		_strToID = new HashMap<String, Integer>();
		_idToStr = new HashMap<Integer, Set<String>>();
		_strToSrc = new HashMap<String, String>();
		
		// iterate over all documents in the corpus
		for(int docID = 0; docID < corpus.size(); ++docID){
			Stats currStats = predictAndTest(docID, corpus, trueLabels, bw_abbvs);
			if(trueLabels!= null){
				totalStats.TP += currStats.TP;
				totalStats.FP += currStats.FP;
				totalStats.FN += currStats.FN;
				totalStats.precision += currStats.precision;
				totalStats.recall += currStats.recall;
				totalStats.F1 += currStats.F1;
			}
		}
		
		outputPairs(bw_strings);
		
		bw_abbvs.close();
		bw_strings.close();
		
		if(trueLabels!= null){
			System.out.println("Avg TP: "+(totalStats.TP / (double)corpus.size()));
			System.out.println("Avg FP: "+(totalStats.FP / (double)corpus.size()));
			System.out.println("Avg Precision: "+(totalStats.precision / (double)corpus.size()));
			System.out.println("Avg Recall: "+(totalStats.recall / (double)corpus.size()));
			System.out.println("Avg F1: "+(totalStats.F1 / (double)corpus.size()));
			
			float tot_precision, tot_recall, tot_F1;
			if(totalStats.TP+totalStats.FP == 0){
				tot_precision = 1f;
			}
			else{
				tot_precision = new Float(totalStats.TP) / new Float(totalStats.TP+totalStats.FP);
			}
			tot_recall = totalStats.TP / new Float(totalStats.TP+totalStats.FN);
			tot_F1 = 2* ((tot_precision*tot_recall) / (tot_precision+tot_recall));
			System.out.println("Total Precision: "+(tot_precision / (double)corpus.size()));
			System.out.println("Total Recall: "+(tot_recall / (double)corpus.size()));
			System.out.println("Total F1: "+(tot_F1 / (double)corpus.size()));
		}
	}
		
	protected String outputAbbvs(Map<String, Acronym> predictions) {
		String out = "";
		for (String sf : predictions.keySet()) {
			String lf = predictions.get(sf)._longForm;
			out += sf + "\t" + lf + "#_#";
		}
		return out;
	}
	
	protected void addAbbreviationPairs(Map<String, Acronym> predictions) {
		for (String sf : predictions.keySet()) {
			String lf = predictions.get(sf)._longForm;
			Integer sf_id = _strToID.get(sf);
			Integer lf_id = _strToID.get(lf);
			
			if (sf_id == null && lf_id == null){
				Integer id = _strToID.size();
				_strToID.put(sf, id);
				_strToID.put(lf, id);
				_idToStr.put(id, new HashSet<String>());
				_idToStr.get(id).add(sf);
				_idToStr.get(id).add(lf);
			}
			else if (sf_id == null && lf_id != null) {
				_strToID.put(sf, lf_id);
				_idToStr.get(lf_id).add(sf);
			}
			else if (lf_id == null && sf_id != null) {
				_strToID.put(lf, sf_id);
				_idToStr.get(sf_id).add(lf);
			}
			else if (sf_id != lf_id) {
				_strToID.put(lf, sf_id);
				for (String str : _idToStr.get(lf_id)) {
					_strToID.put(str, sf_id);
					_idToStr.get(sf_id).add(str);
				}
				_idToStr.remove(lf_id);
			}
			
			_strToSrc.put(sf, "short");
			_strToSrc.put(lf, "long"); 
		}
	}
	
	protected void outputPairs(BufferedWriter bw) throws IOException {
		Integer ids[] = _idToStr.keySet().toArray(new Integer[0]);
		for (int newId = 0; newId < ids.length; newId++) {
			int oldId = ids[newId];
			for (String str : _idToStr.get(oldId)) {
				bw.write(_strToSrc.get(str) + "\t" + newId + "\t" + str + "\n");
			}
		}
	}
	
	protected Stats predictAndTest(int docID, List<String> corpus, List<Map<String, String>> trueLabels, BufferedWriter bw_abbvs) 
	throws IOException {
		// predict
		String text = corpus.get(docID);
		Collection<Acronym> all_predictions = _alignPredictor.predict(text);
		Map<String, Acronym> final_predictions = _alignPredictor.acronymsArrayToMap(all_predictions);
		
		bw_abbvs.write(outputAbbvs(final_predictions)+"\n");
		addAbbreviationPairs(final_predictions);

		// test
		if(trueLabels != null){
			Map<String, String> docTrueLabels = trueLabels.get(docID);
			Stats stats = new Stats();
			
			stats.FN = docTrueLabels.size();
			stats.TP = 0;
			stats.FP = 0;
			for (String shortFort : final_predictions.keySet()) {
				String predictedLongForm = final_predictions.get(shortFort)._longForm;
				if(predictedLongForm == null){
					stats.FP++;
				}
				else{
					String trueLongForm = docTrueLabels.get(shortFort);
					if(predictedLongForm.toLowerCase().equals(trueLongForm.toLowerCase())){
						stats.FP++;
					}
					else{
						stats.TP++;
						stats.FN--;
					}
				}
			}
			
			if(stats.TP+stats.FP == 0){
				stats.precision = 1f;
			}
			else{
				stats.precision = new Float(stats.TP) / new Float(stats.TP+stats.FP);
			}
			stats.recall = stats.TP / new Float(stats.TP+stats.FN);
			stats.F1 = 2 * ((stats.precision*stats.recall) / (stats.precision+stats.recall));
			return stats;
		}
		return null;
	}

	/**
	 * Extracts abbreviation pairs from text.<br><br>
	 * Usage: ExtractAbbreviations input experiment_name [gold-file] [train-dir] 
	 */
	public static void main(String[] args) {
		if(args.length < 2){
			System.out.println("Usage: ExtractAbbreviations input experiment_name [gold-file] [train-dir] \n\n"+
					   "input - Corpus file (one line per file) from which abbreviations will be extracted.\n"+
					   "experiment_name - The experiment name will be used to create these output files:\n"+
					   "                 './<name>_abbvs' - contains the abbreviations extracted from the corpus, in a format similar to './train/abbvAlign_pairs.txt', "+
					   "the abbreviations from each document are concatenated to one line.\n"+
					   "                 './<name>_strings' - contains pairs of short and long forms of abbreviations extracted from the corpus, "+
					   "in a format that can be used for a matching experiment (using MatchExpt, AbbreviationsBlocker, and AbbreviationAlignment distance)."+
					   "train - Optional. Directory containing a corpus file named 'abbvAlign_corpus.txt' for training the abbreviation HMM. "+
					   "Corpus format is one line per file.\n"+
					   "                 The model parameters will be saved in this directory under 'hmmModelParams.txt' so the HMM will only have to be trained once.\n"+
					   "                 Default = './train/'\n"+
					   "gold - Optional. If available, the gold data will be used to estimate the performance of the HMM on the input corpus.\n"+
					   "                 './train/abbvAlign_pairs.txt' is a sample gold file for the 'train/abbvAlign_corpus.txt corpus.'\n"+
					   "                 Default = by default, no gold data is given and no estimation is done."
					   );
			System.exit(1);
		}
			
		String input = args[0];
		String output = args[1];
		
		String gold = null;
		if(args.length > 2)
			gold = args[2];
		
		String train = "./train";
		if(args.length > 3)
			train = args[3];
		
		ExtractAbbreviations tester = new ExtractAbbreviations(input, output, train, gold);
		try {
			tester.run();
		} catch (IOException e) {
			e.printStackTrace();
		}
	}
	
}