1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
package com.wcohen.ss.expt;
import com.wcohen.ss.*;
import com.wcohen.ss.api.*;
import java.io.*;
import java.util.*;
/**
* Perform a matching experiment using a vocabulary stats file, data
* file, distance function and blocker. The vocabulary stats file
* lists defined IDF values for each token.
*/
public class SpecialMatchExpt
{
public static final String BLOCKER_PACKAGE = "com.wcohen.ss.expt.";
public static final String DISTANCE_PACKAGE = "com.wcohen.ss.";
private Blocker.Pair[] pairs;
private int numCorrectPairs;
private double learningTime;
private double blockingTime;
private double matchingTime;
private double sortingTime;
private String fileName,learnerName,blockerName;
private StringDistance learnedDistance;
public SpecialMatchExpt(MatchData data,StringDistanceLearner learner,Blocker blocker,boolean useTrueClusters,String moreNamesFile,String similarTokenFile,boolean untrained)
throws IOException
{
setUpFixedExperiment(data,learner,blocker,useTrueClusters,moreNamesFile,similarTokenFile,untrained);
fileName = data.getFilename();
learnerName = learner.toString();
blockerName = blocker.toString();
}
public String toString() { return "[SpecialMatchExpt.java: "+fileName+","+learnerName+","+blockerName+"]"; };
public StringDistance getLearnedDistance() { return learnedDistance; }
private void setVocabStatByTrueClusters(TFIDF dist, MatchData data) {
// use the match data to reconstruct the true clusters
Map<String,HashSet<Token>> tokensById = new HashMap<String,HashSet<Token>>();
for (int i=0; i<data.numSources(); i++) {
String src = data.getSource(i);
for (int j=0; j<data.numInstances(src); j++) {
MatchData.Instance inst = data.getInstance(src,j);
// increment the id-specific set of tokens
String id = inst.getId();
dist.prepare(inst.unwrap());
Token[] toks = dist.getTokens();
if (tokensById.get(id)==null) tokensById.put(id,new HashSet<Token>());
//System.out.println("src: "+src+" instance: "+inst);
for (int k=0; k<toks.length; k++) {
//System.out.println(" - token: "+toks[k]);
tokensById.get(id).add(toks[k]);
}
}
}
// count the df in each true cluster
Map<Token,Integer> dfMap = new HashMap<Token,Integer>();
for (Iterator it=tokensById.keySet().iterator(); it.hasNext(); ) {
String docId = (String)it.next();
for (Iterator jt = tokensById.get(docId).iterator(); jt.hasNext(); ) {
Token t = (Token)jt.next();
if (dfMap.get(t)==null) dfMap.put(t,new Integer(0));
dfMap.put(t, new Integer(dfMap.get(t).intValue()+1));
}
}
// transfer the df's to the distance
for (Iterator it=dfMap.keySet().iterator(); it.hasNext(); ) {
Token t = (Token)it.next();
int df = dfMap.get(t).intValue();
dist.setDocumentFrequency(t, df);
//if (df>1) System.out.println("set df " +t + " => "+df);
}
//System.out.println("set Ndocs => " + dfMap.keySet().size());
dist.setCollectionSize( dfMap.keySet().size() );
System.out.println("** DFs set by true clusters **");
}
private void setUpFixedExperiment(MatchData data,StringDistanceLearner learner,Blocker blocker,boolean useTrueClusters,String moreNamesFile,String similarTokenFile,boolean untrained)
throws IOException
{
System.out.println("setting up expt: "+learner+" "+blocker+" file: "+data.getFilename());
StringDistanceTeacher teacher = new BasicTeacher(blocker,data);
long startTime = System.currentTimeMillis();
learnedDistance = teacher.train(learner);
if (untrained) {
// remove the DFs for each training token
for (int i=0; i<data.numSources(); i++) {
String src = data.getSource(i);
for (int j=0; j<data.numInstances(src); j++) {
MatchData.Instance inst = data.getInstance(src,j);
learnedDistance.prepare(inst.unwrap());
Token[] toks = ((TFIDF)learnedDistance).getTokens();
for (int k=0; k<toks.length; k++) {
((TFIDF)learnedDistance).setDocumentFrequency(toks[k],1);
}
}
}
System.out.println("reset DFs to 1.0 for all tokens!");
}
if (useTrueClusters) {
setVocabStatByTrueClusters((TFIDF)learnedDistance,data);
}
if (moreNamesFile != null) {
// each line contains a single name
Set<StringWrapper> moreNames = new HashSet<StringWrapper>();
BufferedReader in = new BufferedReader(new FileReader(moreNamesFile));
String line;
while ((line = in.readLine())!=null) {
moreNames.add(learnedDistance.prepare(line));
}
System.out.println("loaded "+moreNames.size()+" additional names");
((AbstractTokenizedStringDistance)learnedDistance).train(new BasicStringWrapperIterator(moreNames.iterator()));
System.out.println("trained!");
}
if (similarTokenFile != null) {
System.out.println("loading similarTokenFile "+similarTokenFile);
TFIDF distAsTFIDF = (TFIDF)learnedDistance;
BufferedReader in = new BufferedReader(new FileReader(similarTokenFile));
String line;
// each line has format clusterID token1 ... tokenk
while ((line = in.readLine())!=null) {
distAsTFIDF.prepare(line);
Token[] toks = distAsTFIDF.getTokens();
int maxDF = -1;
int sumDF = 0;
for (int i=1; i<toks.length; i++) {
//System.out.println(toks[i]+" df "+distAsTFIDF.getDocumentFrequency(toks[i]));
if (maxDF<=distAsTFIDF.getDocumentFrequency(toks[i])) maxDF = distAsTFIDF.getDocumentFrequency(toks[i]);
sumDF += distAsTFIDF.getDocumentFrequency(toks[i]);
}
//System.out.println("line: "+line+" maxDF "+maxDF+" sumDF "+sumDF);
for (int i=1; i<toks.length; i++) {
//System.out.println("increase DF of " + toks[i] + " from " + distAsTFIDF.getDocumentFrequency(toks[i]) + " => " + maxDF);
distAsTFIDF.setDocumentFrequency(toks[i], maxDF);
}
}
}
learningTime = (System.currentTimeMillis()-startTime)/1000.0;
System.out.println("distance is '"+learnedDistance+"'");
startTime = System.currentTimeMillis();
blocker.block(data);
blockingTime = (System.currentTimeMillis()-startTime)/1000.0;
numCorrectPairs = blocker.numCorrectPairs();
pairs = new Blocker.Pair[blocker.size()];
startTime = System.currentTimeMillis();
System.out.println("Pairs: "+pairs.length+" Correct: "+blocker.numCorrectPairs());
for (int i=0; i<blocker.size(); i++) {
pairs[i] = blocker.getPair(i);
pairs[i].setDistance( learnedDistance.score( pairs[i].getA(), pairs[i].getB() ) );
}
matchingTime = (System.currentTimeMillis()-startTime)/1000.0;
startTime = System.currentTimeMillis();
Arrays.sort( pairs );
sortingTime = (System.currentTimeMillis()-startTime)/1000.0;
System.out.println("Matching time: "+matchingTime);
}
/** Return total time to process data. */
public Double time() {
return new Double(learningTime+blockingTime+matchingTime+sortingTime);
}
/** Return total time to process data, divided by the number of pairs */
public Double pairsPerSecond() {
return new Double( pairs.length / (learningTime+blockingTime+matchingTime+sortingTime) );
}
/** non-interpolated average precision */
public Double averagePrecision()
{
double n = 0;
double sumPrecision = 0;
for (int i=0; i<pairs.length; i++) {
if (correctPair(i)) {
n++;
double precisionAtRankI = n/(i+1.0);
sumPrecision += precisionAtRankI;
}
}
return new Double(sumPrecision / numCorrectPairs);
}
/** max F1 for any threshold */
public Double maxF1()
{
double maxF1 = -Double.MAX_VALUE;
double n = 0;
for (int i=0; i<pairs.length; i++) {
if (correctPair(i)) {
n++;
double precisionAtRankI = n/(i+1.0);
double recallAtRankI = n/numCorrectPairs;
if (precisionAtRankI>0 && recallAtRankI>0) {
double f1 = 2*(precisionAtRankI*recallAtRankI) / (precisionAtRankI + recallAtRankI);
maxF1 = Math.max( f1, maxF1 );
}
}
}
return new Double(maxF1);
}
/** performance of the blocker */
public Double blockerRecall()
{
double n = 0;
for (int i=0; i<pairs.length; i++) {
if (correctPair(i)) {
n++;
}
}
return new Double(n/numCorrectPairs);
}
//
// compute 11-pt interpolated precision/recall
//
private static double[] elevenPoints = new double[] { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 };
/** Return recall levels associated with the precision levels returned by interpolated11PointPrecision. */
static public double[] interpolated11PointRecallLevels() { return elevenPoints; }
/** Return an array of interpolated precision at various different recall levels. */
public double[] interpolated11PointPrecision()
{
double[] interpolatedPrecision = new double[11];
int numCorrectAtRankI = 0;
for (int i=0; i<pairs.length; i++) {
if (correctPair(i)) ++numCorrectAtRankI;
double recall = numCorrectAtRankI/((double)numCorrectPairs);
double precision = numCorrectAtRankI/(i+1.0);
for (int j=0; j<elevenPoints.length; j++) {
if (recall>=elevenPoints[j]) {
interpolatedPrecision[j] = Math.max(interpolatedPrecision[j], precision);
}
}
}
return interpolatedPrecision;
}
/** Graph interpolated precision vs recall */
public void graphPrecisionRecall(PrintStream out) throws IOException
{
/** find interpolated precision - max precision at any rank point after i */
double[] interpolatedPrecision = new double[pairs.length];
double n = numCorrectPairs;
double maxPrecision = n/pairs.length;
for (int i=pairs.length-1; i>=0; i--) {
if (correctPair(i)) {
interpolatedPrecision[i] = maxPrecision;
n--;
maxPrecision = Math.max(maxPrecision, n/(i+1));
}
}
/** plot points on the graph */
n = 0;
for (int i=0; i<pairs.length; i++) {
if (correctPair(i)) {
n++;
double recallAtRankI = n/numCorrectPairs;
out.println(recallAtRankI+"\t"+interpolatedPrecision[i]);
}
}
}
/** Show results in a simple format.
*/
public void displayResults(boolean showMismatches,PrintStream out) throws IOException
{
PrintfFormat fmt = new PrintfFormat("%s %3d %7.2f | %30s | %30s\n");
for (int i=0; i<pairs.length; i++) {
if (pairs[i]!=null) {
String label = pairs[i].isCorrect() ? "+" : "-";
String aText = (pairs[i].getA()==null) ? "***" : pairs[i].getA().unwrap();
String bText = (pairs[i].getB()==null) ? "***" : pairs[i].getB().unwrap();
if (showMismatches || "+".equals(label)) {
out.print( fmt.sprintf( new Object[] {
label,
new Integer(i+1),
new Double(pairs[i].getDistance()),
aText,
bText
}));
}
}
}
}
/** Show results in an easily machine-readable format.
*/
public void dumpResults(PrintStream out) throws IOException
{
PrintfFormat fmt = new PrintfFormat("%7.2f\t%s\t%s\n");
for (int i=0; i<pairs.length; i++) {
if (pairs[i]!=null) {
String aText = (pairs[i].getA()==null) ? "***" : pairs[i].getA().unwrap();
String bText = (pairs[i].getB()==null) ? "***" : pairs[i].getB().unwrap();
out.print( fmt.sprintf( new Object[] {
new Double(pairs[i].getDistance()),
aText,
bText
}));
}
}
}
//
// utility - since after a restore, incorrect pairs are saved as nulls
//
private boolean correctPair(int i) { return pairs[i]!=null && pairs[i].isCorrect(); }
/**
* Command-line interface.
*/
static public void main(String[] argv)
{
try {
Blocker blocker = (Blocker)Class.forName(BLOCKER_PACKAGE+argv[0]).newInstance();
StringDistanceLearner learner = DistanceLearnerFactory.build( argv[1] );
MatchData data = new MatchData(argv[2]);
// check for options for the experiment
boolean useTrueClusters = false;
String moreNamesFile = null;
String similarTokenFile = null;
boolean untrained = false;
for (int i=3; i<argv.length; ) {
String c = argv[i++];
if (c.equals("-trueClusters")) {
useTrueClusters = true;
} else if (c.equals("-untrained")) {
untrained = true;
} else if (c.equals("-moreNames")) {
moreNamesFile = argv[i++];
} else if (c.equals("-similarTokens")) {
similarTokenFile = argv[i++];
}
}
// run the experiment
SpecialMatchExpt expt = new SpecialMatchExpt(data,learner,blocker,useTrueClusters,moreNamesFile,similarTokenFile,untrained);
// print results
for (int i=3; i<argv.length; ) {
String c = argv[i++];
if (c.equals("-display")) {
expt.displayResults(true,System.out);
} else if (c.equals("-dump")) {
expt.dumpResults(System.out);
} else if (c.equals("-shortDisplay")) {
expt.displayResults(false,System.out);
} else if (c.equals("-graph")) {
expt.graphPrecisionRecall(System.out);
} else if (c.equals("-summarize")) {
System.out.println("maxF1:\t" + expt.maxF1());
System.out.println("avgPrec:\t" + expt.averagePrecision());
} else if (c.equals("-explain")) {
// debugging, trick 1
System.out.println("distance: "+expt.getLearnedDistance());
System.out.println("inputs: '"+argv[i]+"' and '"+argv[i+1] + "'");
System.out.println(expt.getLearnedDistance().explainScore(argv[i],argv[i+1]));
i += 2;
} else if (c.equals("-df")) {
TFIDF dist = ((TFIDF)expt.getLearnedDistance());
dist.prepare(argv[i++]);
Token[] toks = dist.getTokens();
for (int j=0; j<toks.length; j++) {
System.out.println("df of "+toks[j]+" is "+dist.getDocumentFrequency(toks[j]));
}
} else if (c.equals("-trueClusters") || c.equals("-untrained")) {
;
} else if (c.equals("-moreNames") || c.equals("-similarTokens")) {
i++;
} else {
throw new RuntimeException("illegal command "+c);
}
}
} catch (Exception e) {
e.printStackTrace();
System.out.println("\nusage: <blocker> <distanceClass> <matchDataFile> [commands]\n");
}
}
}
|