File: sha1.c

package info (click to toggle)
libselinux 2.6-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 2,172 kB
  • ctags: 2,529
  • sloc: ansic: 16,149; makefile: 339; sh: 20
file content (214 lines) | stat: -rw-r--r-- 8,658 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  LibSha1
//
//  Implementation of SHA1 hash function.
//  Original author:  Steve Reid <sreid@sea-to-sky.net>
//  Contributions by: James H. Brown <jbrown@burgoyne.com>, Saul Kravitz <Saul.Kravitz@celera.com>,
//  and Ralph Giles <giles@ghostscript.com>
//  Modified by WaterJuice retaining Public Domain license.
//
//  This is free and unencumbered software released into the public domain - June 2013 waterjuice.org
//  Modified to stop symbols being exported for libselinux shared library - October 2015
//								       Richard Haines <richard_c_haines@btinternet.com>
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  IMPORTS
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include "sha1.h"
#include "dso.h"
#include <memory.h>

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  TYPES
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

typedef union
{
    uint8_t     c [64];
    uint32_t    l [16];
} CHAR64LONG16;

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  INTERNAL FUNCTIONS
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

// blk0() and blk() perform the initial expand.
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
    |(rol(block->l[i],8)&0x00FF00FF))

#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
    ^block->l[(i+2)&15]^block->l[i&15],1))

// (R0+R1), R2, R3, R4 are the different operations used in SHA1
#define R0(v,w,x,y,z,i)  z += ((w&(x^y))^y)     + blk0(i)+ 0x5A827999 + rol(v,5); w=rol(w,30);
#define R1(v,w,x,y,z,i)  z += ((w&(x^y))^y)     + blk(i) + 0x5A827999 + rol(v,5); w=rol(w,30);
#define R2(v,w,x,y,z,i)  z += (w^x^y)           + blk(i) + 0x6ED9EBA1 + rol(v,5); w=rol(w,30);
#define R3(v,w,x,y,z,i)  z += (((w|x)&y)|(w&x)) + blk(i) + 0x8F1BBCDC + rol(v,5); w=rol(w,30);
#define R4(v,w,x,y,z,i)  z += (w^x^y)           + blk(i) + 0xCA62C1D6 + rol(v,5); w=rol(w,30);


///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  TransformFunction
//
//  Hash a single 512-bit block. This is the core of the algorithm
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static
void
    TransformFunction
    (
        uint32_t            state[5],
        const uint8_t       buffer[64]
    )
{
    uint32_t            a;
    uint32_t            b;
    uint32_t            c;
    uint32_t            d;
    uint32_t            e;
    uint8_t             workspace[64];
    CHAR64LONG16*       block = (CHAR64LONG16*) workspace;

    memcpy( block, buffer, 64 );

    // Copy context->state[] to working vars
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    e = state[4];

    // 4 rounds of 20 operations each. Loop unrolled.
    R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
    R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
    R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
    R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
    R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
    R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
    R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
    R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
    R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
    R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
    R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
    R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
    R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
    R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
    R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
    R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
    R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
    R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
    R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
    R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);

    // Add the working vars back into context.state[]
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  PUBLIC FUNCTIONS
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  Sha1Initialise
//
//  Initialises an SHA1 Context. Use this to initialise/reset a context.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void hidden
    Sha1Initialise
    (
        Sha1Context*                Context
    )
{
    // SHA1 initialization constants
    Context->State[0] = 0x67452301;
    Context->State[1] = 0xEFCDAB89;
    Context->State[2] = 0x98BADCFE;
    Context->State[3] = 0x10325476;
    Context->State[4] = 0xC3D2E1F0;
    Context->Count[0] = 0;
    Context->Count[1] = 0;
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  Sha1Update
//
//  Adds data to the SHA1 context. This will process the data and update the internal state of the context. Keep on
//  calling this function until all the data has been added. Then call Sha1Finalise to calculate the hash.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void hidden
    Sha1Update
    (
        Sha1Context*        Context,
        void*               Buffer,
        uint32_t            BufferSize
    )
{
    uint32_t    i;
    uint32_t    j;

    j = (Context->Count[0] >> 3) & 63;
    if( (Context->Count[0] += BufferSize << 3) < (BufferSize << 3) )
    {
        Context->Count[1]++;
    }

    Context->Count[1] += (BufferSize >> 29);
    if( (j + BufferSize) > 63 )
    {
        i = 64 - j;
        memcpy( &Context->Buffer[j], Buffer, i );
        TransformFunction(Context->State, Context->Buffer);
        for( ; i + 63 < BufferSize; i += 64 )
        {
            TransformFunction(Context->State, (uint8_t*)Buffer + i);
        }
        j = 0;
    }
    else
    {
        i = 0;
    }

    memcpy( &Context->Buffer[j], &((uint8_t*)Buffer)[i], BufferSize - i );
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  Sha1Finalise
//
//  Performs the final calculation of the hash and returns the digest (20 byte buffer containing 160bit hash). After
//  calling this, Sha1Initialised must be used to reuse the context.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void hidden
    Sha1Finalise
    (
        Sha1Context*                Context,
        SHA1_HASH*                  Digest
    )
{
    uint32_t    i;
    uint8_t     finalcount[8];

    for( i=0; i<8; i++ )
    {
        finalcount[i] = (unsigned char)((Context->Count[(i >= 4 ? 0 : 1)]
         >> ((3-(i & 3)) * 8) ) & 255);  // Endian independent
    }
    Sha1Update( Context, (uint8_t*)"\x80", 1 );
    while( (Context->Count[0] & 504) != 448 )
    {
        Sha1Update( Context, (uint8_t*)"\0", 1 );
    }

    Sha1Update( Context, finalcount, 8 );  // Should cause a Sha1TransformFunction()
    for( i=0; i<SHA1_HASH_SIZE; i++ )
    {
        Digest->bytes[i] = (uint8_t)((Context->State[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
    }
}