1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
/*
* Copyright (C) 2015 Christopher Gilbert.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef AHO_CORASICK_HPP
#define AHO_CORASICK_HPP
#include <algorithm>
#include <cctype>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <queue>
#include <vector>
namespace aho_corasick {
// class interval
class interval {
size_t d_start;
size_t d_end;
public:
interval(size_t start, size_t end)
: d_start(start)
, d_end(end) {}
size_t get_start() const { return d_start; }
size_t get_end() const { return d_end; }
size_t size() const { return d_end - d_start + 1; }
bool overlaps_with(const interval& other) const {
return d_start <= other.d_end && d_end >= other.d_start;
}
bool overlaps_with(size_t point) const {
return d_start <= point && point <= d_end;
}
bool operator <(const interval& other) const {
return get_start() < other.get_start();
}
bool operator !=(const interval& other) const {
return get_start() != other.get_start() || get_end() != other.get_end();
}
bool operator ==(const interval& other) const {
return get_start() == other.get_start() && get_end() == other.get_end();
}
};
// class interval_tree
template<typename T>
class interval_tree {
public:
using interval_collection = std::vector<T>;
private:
// class node
class node {
enum direction {
LEFT, RIGHT
};
using node_ptr = std::unique_ptr<node>;
size_t d_point;
node_ptr d_left;
node_ptr d_right;
interval_collection d_intervals;
public:
node(const interval_collection& intervals)
: d_point(0)
, d_left(nullptr)
, d_right(nullptr)
, d_intervals()
{
d_point = determine_median(intervals);
interval_collection to_left, to_right;
for (const auto& i : intervals) {
if (i.get_end() < d_point) {
to_left.push_back(i);
} else if (i.get_start() > d_point) {
to_right.push_back(i);
} else {
d_intervals.push_back(i);
}
}
if (to_left.size() > 0) {
d_left.reset(new node(to_left));
}
if (to_right.size() > 0) {
d_right.reset(new node(to_right));
}
}
size_t determine_median(const interval_collection& intervals) const {
int start = -1;
int end = -1;
for (const auto& i : intervals) {
int cur_start = i.get_start();
int cur_end = i.get_end();
if (start == -1 || cur_start < start) {
start = cur_start;
}
if (end == -1 || cur_end > end) {
end = cur_end;
}
}
return (start + end) / 2;
}
interval_collection find_overlaps(const T& i) {
interval_collection overlaps;
if (d_point < i.get_start()) {
add_to_overlaps(i, overlaps, find_overlapping_ranges(d_right, i));
add_to_overlaps(i, overlaps, check_right_overlaps(i));
} else if (d_point > i.get_end()) {
add_to_overlaps(i, overlaps, find_overlapping_ranges(d_left, i));
add_to_overlaps(i, overlaps, check_left_overlaps(i));
} else {
add_to_overlaps(i, overlaps, d_intervals);
add_to_overlaps(i, overlaps, find_overlapping_ranges(d_left, i));
add_to_overlaps(i, overlaps, find_overlapping_ranges(d_right, i));
}
return interval_collection(overlaps);
}
protected:
void add_to_overlaps(const T& i, interval_collection& overlaps, interval_collection new_overlaps) const {
for (const auto& cur : new_overlaps) {
if (cur != i) {
overlaps.push_back(cur);
}
}
}
interval_collection check_left_overlaps(const T& i) const {
return interval_collection(check_overlaps(i, LEFT));
}
interval_collection check_right_overlaps(const T& i) const {
return interval_collection(check_overlaps(i, RIGHT));
}
interval_collection check_overlaps(const T& i, direction d) const {
interval_collection overlaps;
for (const auto& cur : d_intervals) {
switch (d) {
case LEFT:
if (cur.get_start() <= i.get_end()) {
overlaps.push_back(cur);
}
break;
case RIGHT:
if (cur.get_end() >= i.get_start()) {
overlaps.push_back(cur);
}
break;
}
}
return interval_collection(overlaps);
}
interval_collection find_overlapping_ranges(node_ptr& node, const T& i) const {
if (node) {
return interval_collection(node->find_overlaps(i));
}
return interval_collection();
}
};
node d_root;
public:
interval_tree(const interval_collection& intervals)
: d_root(intervals) {}
interval_collection remove_overlaps(const interval_collection& intervals) {
interval_collection result(intervals.begin(), intervals.end());
std::sort(result.begin(), result.end(), [](const T& a, const T& b) -> bool {
if (b.size() - a.size() == 0) {
return a.get_start() > b.get_start();
}
return a.size() > b.size();
});
std::set<T> remove_tmp;
for (const auto& i : result) {
if (remove_tmp.find(i) != remove_tmp.end()) {
continue;
}
auto overlaps = find_overlaps(i);
for (const auto& overlap : overlaps) {
remove_tmp.insert(overlap);
}
}
for (const auto& i : remove_tmp) {
result.erase(
std::find(result.begin(), result.end(), i)
);
}
std::sort(result.begin(), result.end(), [](const T& a, const T& b) -> bool {
return a.get_start() < b.get_start();
});
return interval_collection(result);
}
interval_collection find_overlaps(const T& i) {
return interval_collection(d_root.find_overlaps(i));
}
};
// class ahoemit
template<typename CharType>
class ahoemit: public interval {
public:
typedef std::basic_string<CharType> string_type;
typedef std::basic_string<CharType>& string_ref_type;
private:
string_type d_keyword;
public:
ahoemit()
: interval(-1, -1)
, d_keyword() {}
ahoemit(size_t start, size_t end, string_type keyword)
: interval(start, end)
, d_keyword(keyword) {}
string_type get_keyword() const { return string_type(d_keyword); }
bool is_empty() const { return (get_start() == -1 && get_end() == -1); }
};
// class token
template<typename CharType>
class token {
public:
enum token_type{
TYPE_FRAGMENT,
TYPE_MATCH,
};
using string_type = std::basic_string<CharType>;
using string_ref_type = std::basic_string<CharType>&;
using ahoemit_type = ahoemit<CharType>;
private:
token_type d_type;
string_type d_fragment;
ahoemit_type d_ahoemit;
public:
token(string_ref_type fragment)
: d_type(TYPE_FRAGMENT)
, d_fragment(fragment)
, d_ahoemit() {}
token(string_ref_type fragment, const ahoemit_type& e)
: d_type(TYPE_MATCH)
, d_fragment(fragment)
, d_ahoemit(e) {}
bool is_match() const { return (d_type == TYPE_MATCH); }
string_type get_fragment() const { return string_type(d_fragment); }
ahoemit_type get_ahoemit() const { return d_ahoemit; }
};
// class state
template<typename CharType>
class state {
public:
typedef state<CharType>* ptr;
typedef std::unique_ptr<state<CharType>> unique_ptr;
typedef std::basic_string<CharType> string_type;
typedef std::basic_string<CharType>& string_ref_type;
typedef std::set<string_type> string_collection;
typedef std::vector<ptr> state_collection;
typedef std::vector<CharType> transition_collection;
private:
size_t d_depth;
ptr d_root;
std::map<CharType, unique_ptr> d_success;
ptr d_failure;
string_collection d_ahoemits;
public:
state(): state(0) {}
state(size_t depth)
: d_depth(depth)
, d_root(depth == 0 ? this : nullptr)
, d_success()
, d_failure(nullptr)
, d_ahoemits() {}
ptr next_state(CharType character) const {
return next_state(character, false);
}
ptr next_state_ignore_root_state(CharType character) const {
return next_state(character, true);
}
ptr add_state(CharType character) {
auto next = next_state_ignore_root_state(character);
if (next == nullptr) {
next = new state<CharType>(d_depth + 1);
d_success[character].reset(next);
}
return next;
}
size_t get_depth() const { return d_depth; }
void add_ahoemit(string_ref_type keyword) {
d_ahoemits.insert(keyword);
}
void add_ahoemit(const string_collection& ahoemits) {
for (const auto& e : ahoemits) {
string_type str(e);
add_ahoemit(str);
}
}
string_collection get_ahoemits() const { return d_ahoemits; }
ptr failure() const { return d_failure; }
void set_failure(ptr fail_state) { d_failure = fail_state; }
state_collection get_states() const {
state_collection result;
for (auto it = d_success.cbegin(); it != d_success.cend(); ++it) {
result.push_back(it->second.get());
}
return state_collection(result);
}
transition_collection get_transitions() const {
transition_collection result;
for (auto it = d_success.cbegin(); it != d_success.cend(); ++it) {
result.push_back(it->first);
}
return transition_collection(result);
}
private:
ptr next_state(CharType character, bool ignore_root_state) const {
ptr result = nullptr;
auto found = d_success.find(character);
if (found != d_success.end()) {
result = found->second.get();
} else if (!ignore_root_state && d_root != nullptr) {
result = d_root;
}
return result;
}
};
template<typename CharType>
class basic_trie {
public:
using string_type = std::basic_string < CharType > ;
using string_ref_type = std::basic_string<CharType>&;
typedef state<CharType> state_type;
typedef state<CharType>* state_ptr_type;
typedef token<CharType> token_type;
typedef ahoemit<CharType> ahoemit_type;
typedef std::vector<token_type> token_collection;
typedef std::vector<ahoemit_type> ahoemit_collection;
class config {
bool d_allow_overlaps;
bool d_only_whole_words;
bool d_case_insensitive;
public:
config()
: d_allow_overlaps(true)
, d_only_whole_words(false)
, d_case_insensitive(false) {}
bool is_allow_overlaps() const { return d_allow_overlaps; }
void set_allow_overlaps(bool val) { d_allow_overlaps = val; }
bool is_only_whole_words() const { return d_only_whole_words; }
void set_only_whole_words(bool val) { d_only_whole_words = val; }
bool is_case_insensitive() const { return d_case_insensitive; }
void set_case_insensitive(bool val) { d_case_insensitive = val; }
};
private:
std::unique_ptr<state_type> d_root;
config d_config;
bool d_constructed_failure_states;
public:
basic_trie(): basic_trie(config()) {}
basic_trie(const config& c)
: d_root(new state_type())
, d_config(c)
, d_constructed_failure_states(false) {}
basic_trie& case_insensitive() {
d_config.set_case_insensitive(true);
return (*this);
}
basic_trie& remove_overlaps() {
d_config.set_allow_overlaps(false);
return (*this);
}
basic_trie& only_whole_words() {
d_config.set_only_whole_words(true);
return (*this);
}
void insert(string_type keyword) {
if (keyword.empty())
return;
state_ptr_type cur_state = d_root.get();
for (const auto& ch : keyword) {
cur_state = cur_state->add_state(ch);
}
cur_state->add_ahoemit(keyword);
}
template<class InputIterator>
void insert(InputIterator first, InputIterator last) {
for (InputIterator it = first; first != last; ++it) {
insert(*it);
}
}
token_collection tokenise(string_type text) {
token_collection tokens;
auto collected_ahoemits = parse_text(text);
size_t last_pos = -1;
for (const auto& e : collected_ahoemits) {
if (e.get_start() - last_pos > 1) {
tokens.push_back(create_fragment(e, text, last_pos));
}
tokens.push_back(create_match(e, text));
last_pos = e.get_end();
}
if (text.size() - last_pos > 1) {
tokens.push_back(create_fragment(typename token_type::ahoemit_type(), text, last_pos));
}
return token_collection(tokens);
}
ahoemit_collection parse_text(string_type text) {
check_construct_failure_states();
size_t pos = 0;
state_ptr_type cur_state = d_root.get();
ahoemit_collection collected_ahoemits;
for (auto c : text) {
if (d_config.is_case_insensitive()) {
c = std::tolower(c);
}
cur_state = get_state(cur_state, c);
store_ahoemits(pos, cur_state, collected_ahoemits);
pos++;
}
if (d_config.is_only_whole_words()) {
remove_partial_matches(text, collected_ahoemits);
}
if (!d_config.is_allow_overlaps()) {
interval_tree<ahoemit_type> tree(typename interval_tree<ahoemit_type>::interval_collection(collected_ahoemits.begin(), collected_ahoemits.end()));
auto tmp = tree.remove_overlaps(collected_ahoemits);
collected_ahoemits.swap(tmp);
}
return ahoemit_collection(collected_ahoemits);
}
private:
token_type create_fragment(const typename token_type::ahoemit_type& e, string_ref_type text, size_t last_pos) const {
auto start = last_pos + 1;
auto end = (e.is_empty()) ? text.size() : e.get_start();
auto len = end - start;
typename token_type::string_type str(text.substr(start, len));
return token_type(str);
}
token_type create_match(const typename token_type::ahoemit_type& e, string_ref_type text) const {
auto start = e.get_start();
auto end = e.get_end() + 1;
auto len = end - start;
typename token_type::string_type str(text.substr(start, len));
return token_type(str, e);
}
void remove_partial_matches(string_ref_type search_text, ahoemit_collection& collected_ahoemits) const {
size_t size = search_text.size();
ahoemit_collection remove_ahoemits;
for (const auto& e : collected_ahoemits) {
if ((e.get_start() == 0 || !std::isalpha(search_text.at(e.get_start() - 1))) &&
(e.get_end() + 1 == size || !std::isalpha(search_text.at(e.get_end() + 1)))
) {
continue;
}
remove_ahoemits.push_back(e);
}
for (auto& e : remove_ahoemits) {
collected_ahoemits.erase(
std::find(collected_ahoemits.begin(), collected_ahoemits.end(), e)
);
}
}
state_ptr_type get_state(state_ptr_type cur_state, CharType c) const {
state_ptr_type result = cur_state->next_state(c);
while (result == nullptr) {
cur_state = cur_state->failure();
result = cur_state->next_state(c);
}
return result;
}
void check_construct_failure_states() {
if (!d_constructed_failure_states) {
construct_failure_states();
}
}
void construct_failure_states() {
std::queue<state_ptr_type> q;
for (auto& depth_one_state : d_root->get_states()) {
depth_one_state->set_failure(d_root.get());
q.push(depth_one_state);
}
d_constructed_failure_states = true;
while (!q.empty()) {
auto cur_state = q.front();
for (const auto& transition : cur_state->get_transitions()) {
state_ptr_type target_state = cur_state->next_state(transition);
q.push(target_state);
state_ptr_type trace_failure_state = cur_state->failure();
while (trace_failure_state->next_state(transition) == nullptr) {
trace_failure_state = trace_failure_state->failure();
}
state_ptr_type new_failure_state = trace_failure_state->next_state(transition);
target_state->set_failure(new_failure_state);
target_state->add_ahoemit(new_failure_state->get_ahoemits());
}
q.pop();
}
}
void store_ahoemits(size_t pos, state_ptr_type cur_state, ahoemit_collection& collected_ahoemits) const {
auto ahoemits = cur_state->get_ahoemits();
if (!ahoemits.empty()) {
for (const auto& str : ahoemits) {
auto ahoemit_str = typename ahoemit_type::string_type(str);
collected_ahoemits.push_back(ahoemit_type(pos - ahoemit_str.size() + 1, pos, ahoemit_str));
}
}
}
};
typedef basic_trie<char> trie;
typedef basic_trie<wchar_t> wtrie;
} // namespace aho_corasick
#endif // AHO_CORASICK_HPP
|