1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
module Sequel
class Dataset
# The Dataset SQL module implements all the dataset methods concerned with
# generating SQL statements for retrieving and manipulating records.
module SQL
# Adds quoting to column references. This method is just a stub and can
# be overriden in adapters in order to provide correct column quoting
# behavior.
def quote_column_ref(name); name.to_s; end
ALIASED_REGEXP = /\A(.*)\s(.*)\z/.freeze
QUALIFIED_REGEXP = /\A(.*)\.(.*)\z/.freeze
# Returns a qualified column name (including a table name) if the column
# name isn't already qualified.
def qualified_column_name(column, table)
s = literal(column)
if s =~ QUALIFIED_REGEXP
return column
else
if table.is_a?(Dataset)
table = :t1
elsif (table =~ ALIASED_REGEXP)
table = $2
end
Sequel::SQL::QualifiedColumnRef.new(table, column)
end
end
WILDCARD = '*'.freeze
COMMA_SEPARATOR = ", ".freeze
# Converts an array of column names into a comma seperated string of
# column names. If the array is empty, a wildcard (*) is returned.
def column_list(columns)
if columns.empty?
WILDCARD
else
m = columns.map do |i|
i.is_a?(Hash) ? i.map {|kv| "#{literal(kv[0])} AS #{kv[1]}"} : literal(i)
end
m.join(COMMA_SEPARATOR)
end
end
def table_ref(t)
case t
when Dataset
t.to_table_reference
when Hash
t.map {|k, v| "#{table_ref(k)} #{table_ref(v)}"}.join(COMMA_SEPARATOR)
when Symbol, String
t
else
literal(t)
end
end
# Converts an array of sources names into into a comma separated list.
def source_list(source)
if source.nil? || source.empty?
raise Error, 'No source specified for query'
end
auto_alias_count = 0
m = source.map do |s|
case s
when Dataset
auto_alias_count += 1
s.to_table_reference(auto_alias_count)
else
table_ref(s)
end
end
m.join(COMMA_SEPARATOR)
end
def first_source
source = @opts[:from]
if source.nil? || source.empty?
raise Error, 'No source specified for query'
end
case s = source.first
when Hash
s.values.first
else
s
end
end
NULL = "NULL".freeze
TIMESTAMP_FORMAT = "TIMESTAMP '%Y-%m-%d %H:%M:%S'".freeze
DATE_FORMAT = "DATE '%Y-%m-%d'".freeze
TRUE = "'t'".freeze
FALSE = "'f'".freeze
# Returns a literal representation of a value to be used as part
# of an SQL expression. The stock implementation supports literalization
# of String (with proper escaping to prevent SQL injections), numbers,
# Symbol (as column references), Array (as a list of literalized values),
# Time (as an SQL TIMESTAMP), Date (as an SQL DATE), Dataset (as a
# subquery) and nil (AS NULL).
#
# dataset.literal("abc'def\\") #=> "'abc''def\\\\'"
# dataset.literal(:items__id) #=> "items.id"
# dataset.literal([1, 2, 3]) => "(1, 2, 3)"
# dataset.literal(DB[:items]) => "(SELECT * FROM items)"
#
# If an unsupported object is given, an exception is raised.
def literal(v)
case v
when LiteralString
v
when String
"'#{v.gsub(/\\/, "\\\\\\\\").gsub(/'/, "''")}'"
when Integer, Float
v.to_s
when BigDecimal
v.to_s("F")
when NilClass
NULL
when TrueClass
TRUE
when FalseClass
FALSE
when Symbol
v.to_column_ref(self)
when Sequel::SQL::Expression
v.to_s(self)
when Array
v.empty? ? NULL : v.map {|i| literal(i)}.join(COMMA_SEPARATOR)
when Time
v.strftime(TIMESTAMP_FORMAT)
when Date
v.strftime(DATE_FORMAT)
when Dataset
"(#{v.sql})"
else
raise Error, "can't express #{v.inspect} as a SQL literal"
end
end
AND_SEPARATOR = " AND ".freeze
QUESTION_MARK = '?'.freeze
# Formats a where clause. If parenthesize is true, then the whole
# generated clause will be enclosed in a set of parentheses.
def expression_list(expr, parenthesize = false)
case expr
when Hash
parenthesize = false if expr.size == 1
fmt = expr.map {|i| compare_expr(i[0], i[1])}.join(AND_SEPARATOR)
when Array
fmt = expr.shift.gsub(QUESTION_MARK) {literal(expr.shift)}
when Proc
fmt = expr.to_sql(self)
else
# if the expression is compound, it should be parenthesized in order for
# things to be predictable (when using #or and #and.)
parenthesize |= expr =~ /\).+\(/
fmt = expr
end
parenthesize ? "(#{fmt})" : fmt
end
private :qualified_column_name, :column_list, :table_ref, :source_list, :expression_list
# Returns a copy of the dataset with the source changed.
def from(*source)
clone(:from => source)
end
# Returns a dataset selecting from the current dataset.
#
# ds = DB[:items].order(:name)
# ds.sql #=> "SELECT * FROM items ORDER BY name"
# ds.from_self.sql #=> "SELECT * FROM (SELECT * FROM items ORDER BY name)"
def from_self
clone(:from => [self], :select => nil, :group => nil,
:sql => nil, :distinct => nil, :join => nil, :where => nil,
:order => nil, :having => nil, :limit => nil, :offset => nil,
:union => nil)
end
# Returns a copy of the dataset with the selected columns changed.
def select(*columns)
clone(:select => columns)
end
# Returns a copy of the dataset with additional selected columns.
def select_more(*columns)
if @opts[:select]
clone(:select => @opts[:select] + columns)
else
clone(:select => columns)
end
end
# Returns a copy of the dataset selecting the wildcard.
def select_all
clone(:select => nil)
end
# Returns a copy of the dataset with the distinct option.
def uniq(*args)
clone(:distinct => args)
end
alias_method :distinct, :uniq
# Returns a copy of the dataset with the order changed. If a nil is given
# the returned dataset has no order. This can accept multiple arguments
# of varying kinds, and even SQL functions.
#
# ds.order(:name).sql #=> 'SELECT * FROM items ORDER BY name'
# ds.order(:a, :b).sql #=> 'SELECT * FROM items ORDER BY a, b'
# ds.order('a + b'.lit).sql #=> 'SELECT * FROM items ORDER BY a + b'
# ds.order(:name.desc).sql #=> 'SELECT * FROM items ORDER BY name DESC'
# ds.order(:name.asc).sql #=> 'SELECT * FROM items ORDER BY name ASC'
# ds.order(:arr|1).sql #=> 'SELECT * FROM items ORDER BY arr[1]'
# ds.order(nil).sql #=> 'SELECT * FROM items'
def order(*order)
clone(:order => (order == [nil]) ? nil : order)
end
alias_method :order_by, :order
# Returns a copy of the dataset with the order changed.
def order_more(*order)
if @opts[:order]
clone(:order => @opts[:order] + order)
else
clone(:order => order)
end
end
# Returns a copy of the dataset with the order reversed. If no order is
# given, the existing order is inverted.
def reverse_order(*order)
order(*invert_order(order.empty? ? @opts[:order] : order))
end
alias_method :reverse, :reverse_order
# Inverts the given order by breaking it into a list of column references
# and inverting them.
#
# dataset.invert_order([:id.desc]]) #=> [:id]
# dataset.invert_order(:category, :price.desc]) #=>
# [:category.desc, :price]
def invert_order(order)
return nil unless order
new_order = []
order.map do |f|
if f.is_a?(Sequel::SQL::ColumnExpr) && (f.op == Sequel::SQL::ColumnMethods::DESC)
f.l
elsif f.is_a?(Sequel::SQL::ColumnExpr) && (f.op == Sequel::SQL::ColumnMethods::ASC)
f.l.desc
else
f.desc
end
end
end
# Returns a copy of the dataset with no order.
def unordered
clone(:order => nil)
end
# Returns a copy of the dataset with the results grouped by the value of
# the given columns
def group(*columns)
clone(:group => columns)
end
alias_method :group_by, :group
# Returns a copy of the dataset with the given conditions imposed upon it.
# If the query has been grouped, then the conditions are imposed in the
# HAVING clause. If not, then they are imposed in the WHERE clause. Filter
# accepts a Hash (formated into a list of equality expressions), an Array
# (formatted ala ActiveRecord conditions), a String (taken literally), or
# a block that is converted into expressions.
#
# dataset.filter(:id => 3).sql #=>
# "SELECT * FROM items WHERE (id = 3)"
# dataset.filter('price < ?', 100).sql #=>
# "SELECT * FROM items WHERE price < 100"
# dataset.filter('price < 100').sql #=>
# "SELECT * FROM items WHERE price < 100"
# dataset.filter {price < 100}.sql #=>
# "SELECT * FROM items WHERE (price < 100)"
#
# Multiple filter calls can be chained for scoping:
#
# software = dataset.filter(:category => 'software')
# software.filter {price < 100}.sql #=>
# "SELECT * FROM items WHERE (category = 'software') AND (price < 100)"
def filter(*cond, &block)
clause = (@opts[:having] ? :having : :where)
cond = cond.first if cond.size == 1
if cond === true || cond === false
raise Error::InvalidFilter, "Invalid filter specified. Did you mean to supply a block?"
end
if cond.is_a?(Hash)
cond = transform_save(cond) if @transform
filter = cond
end
parenthesize = !(cond.is_a?(Hash) || cond.is_a?(Array))
if !@opts[clause].nil? and @opts[clause].any?
l = expression_list(@opts[clause])
r = expression_list(block || cond, parenthesize)
clone(clause => "#{l} AND #{r}")
else
clone(:filter => cond, clause => expression_list(block || cond))
end
end
# Adds an alternate filter to an existing filter using OR. If no filter
# exists an error is raised.
def or(*cond, &block)
clause = (@opts[:having] ? :having : :where)
cond = cond.first if cond.size == 1
parenthesize = !(cond.is_a?(Hash) || cond.is_a?(Array))
if @opts[clause]
l = expression_list(@opts[clause])
r = expression_list(block || cond, parenthesize)
clone(clause => "#{l} OR #{r}")
else
raise Error::NoExistingFilter, "No existing filter found."
end
end
# Adds an further filter to an existing filter using AND. If no filter
# exists an error is raised. This method is identical to #filter except
# it expects an existing filter.
def and(*cond, &block)
clause = (@opts[:having] ? :having : :where)
unless @opts[clause]
raise Error::NoExistingFilter, "No existing filter found."
end
filter(*cond, &block)
end
# Performs the inverse of Dataset#filter.
#
# dataset.exclude(:category => 'software').sql #=>
# "SELECT * FROM items WHERE NOT (category = 'software')"
def exclude(*cond, &block)
clause = (@opts[:having] ? :having : :where)
cond = cond.first if cond.size == 1
parenthesize = !(cond.is_a?(Hash) || cond.is_a?(Array))
if @opts[clause]
l = expression_list(@opts[clause])
r = expression_list(block || cond, parenthesize)
cond = "#{l} AND (NOT #{r})"
else
cond = "(NOT #{expression_list(block || cond, true)})"
end
clone(clause => cond)
end
# Returns a copy of the dataset with the where conditions changed. Raises
# if the dataset has been grouped. See also #filter.
def where(*cond, &block)
filter(*cond, &block)
end
# Returns a copy of the dataset with the having conditions changed. Raises
# if the dataset has not been grouped. See also #filter
def having(*cond, &block)
unless @opts[:group]
raise Error::InvalidOperation, "Can only specify a HAVING clause on a grouped dataset"
else
@opts[:having] = {}
filter(*cond, &block)
end
end
def grep(cols, terms)
conds = [];
cols = [cols] unless cols.is_a?(Array)
terms = [terms] unless terms.is_a?(Array)
cols.each {|c| terms.each {|t| conds << match_expr(c, t)}}
filter(conds.join(' OR '))
end
# Adds a UNION clause using a second dataset object. If all is true the
# clause used is UNION ALL, which may return duplicate rows.
def union(dataset, all = false)
clone(:union => dataset, :union_all => all)
end
# Adds an INTERSECT clause using a second dataset object. If all is true
# the clause used is INTERSECT ALL, which may return duplicate rows.
def intersect(dataset, all = false)
clone(:intersect => dataset, :intersect_all => all)
end
# Adds an EXCEPT clause using a second dataset object. If all is true the
# clause used is EXCEPT ALL, which may return duplicate rows.
def except(dataset, all = false)
clone(:except => dataset, :except_all => all)
end
JOIN_TYPES = {
:left_outer => 'LEFT OUTER JOIN'.freeze,
:right_outer => 'RIGHT OUTER JOIN'.freeze,
:full_outer => 'FULL OUTER JOIN'.freeze,
:inner => 'INNER JOIN'.freeze
}
# Returns a join clause based on the specified join type and condition.
def join_expr(type, table, expr, options)
raise(Error::InvalidJoinType, "Invalid join type: #{type}") unless join_type = JOIN_TYPES[type || :inner]
table_alias = options[:table_alias]
join_conditions = {}
expr.each do |k, v|
k = qualified_column_name(k, table_alias || table) if k.is_a?(Symbol)
v = qualified_column_name(v, @opts[:last_joined_table] || first_source) if v.is_a?(Symbol)
join_conditions[k] = v
end
" #{join_type} #{table} #{"#{table_alias} " if table_alias}ON #{expression_list(join_conditions)}"
end
# Returns a joined dataset with the specified join type and condition.
def join_table(type, table, expr)
unless expr.is_a?(Hash)
expr = {expr => :id}
end
options = {}
if Dataset === table
table = "(#{table.sql})"
table_alias_num = @opts[:num_dataset_joins] || 1
options[:table_alias] = "t#{table_alias_num}"
elsif table.respond_to?(:table_name)
table = table.table_name
end
clause = join_expr(type, table, expr, options)
opts = {:join => @opts[:join] ? @opts[:join] + clause : clause, :last_joined_table => options[:table_alias] || table}
opts[:num_dataset_joins] = table_alias_num + 1 if table_alias_num
clone(opts)
end
# Returns a LEFT OUTER joined dataset.
def left_outer_join(table, expr); join_table(:left_outer, table, expr); end
# Returns a RIGHT OUTER joined dataset.
def right_outer_join(table, expr); join_table(:right_outer, table, expr); end
# Returns an OUTER joined dataset.
def full_outer_join(table, expr); join_table(:full_outer, table, expr); end
# Returns an INNER joined dataset.
def inner_join(table, expr); join_table(:inner, table, expr); end
alias join inner_join
# Inserts multiple values. If a block is given it is invoked for each
# item in the given array before inserting it.
def insert_multiple(array, &block)
if block
array.each {|i| insert(block[i])}
else
array.each {|i| insert(i)}
end
end
# Formats a SELECT statement using the given options and the dataset
# options.
def select_sql(opts = nil)
opts = opts ? @opts.merge(opts) : @opts
if sql = opts[:sql]
return sql
end
columns = opts[:select]
select_columns = columns ? column_list(columns) : WILDCARD
if distinct = opts[:distinct]
distinct_clause = distinct.empty? ? "DISTINCT" : "DISTINCT ON (#{column_list(distinct)})"
sql = "SELECT #{distinct_clause} #{select_columns}"
else
sql = "SELECT #{select_columns}"
end
if opts[:from]
sql << " FROM #{source_list(opts[:from])}"
end
if join = opts[:join]
sql << join
end
if where = opts[:where]
sql << " WHERE #{where}"
end
if group = opts[:group]
sql << " GROUP BY #{column_list(group)}"
end
if order = opts[:order]
sql << " ORDER BY #{column_list(order)}"
end
if having = opts[:having]
sql << " HAVING #{having}"
end
if limit = opts[:limit]
sql << " LIMIT #{limit}"
if offset = opts[:offset]
sql << " OFFSET #{offset}"
end
end
if union = opts[:union]
sql << (opts[:union_all] ? \
" UNION ALL #{union.sql}" : " UNION #{union.sql}")
elsif intersect = opts[:intersect]
sql << (opts[:intersect_all] ? \
" INTERSECT ALL #{intersect.sql}" : " INTERSECT #{intersect.sql}")
elsif except = opts[:except]
sql << (opts[:except_all] ? \
" EXCEPT ALL #{except.sql}" : " EXCEPT #{except.sql}")
end
sql
end
alias_method :sql, :select_sql
# Returns the SQL for formatting an insert statement with default values
def insert_default_values_sql
"INSERT INTO #{source_list(@opts[:from])} DEFAULT VALUES"
end
# Formats an INSERT statement using the given values. If a hash is given,
# the resulting statement includes column names. If no values are given,
# the resulting statement includes a DEFAULT VALUES clause.
#
# dataset.insert_sql() #=> 'INSERT INTO items DEFAULT VALUES'
# dataset.insert_sql(1,2,3) #=> 'INSERT INTO items VALUES (1, 2, 3)'
# dataset.insert_sql(:a => 1, :b => 2) #=>
# 'INSERT INTO items (a, b) VALUES (1, 2)'
def insert_sql(*values)
if values.empty?
insert_default_values_sql
else
values = values[0] if values.size == 1
# if hash or array with keys we need to transform the values
if @transform && (values.is_a?(Hash) || (values.is_a?(Array) && values.keys))
values = transform_save(values)
end
from = source_list(@opts[:from])
case values
when Array
if values.empty?
insert_default_values_sql
else
"INSERT INTO #{from} VALUES (#{literal(values)})"
end
when Hash
if values.empty?
insert_default_values_sql
else
fl, vl = [], []
values.each {|k, v| fl << literal(k.is_a?(String) ? k.to_sym : k); vl << literal(v)}
"INSERT INTO #{from} (#{fl.join(COMMA_SEPARATOR)}) VALUES (#{vl.join(COMMA_SEPARATOR)})"
end
when Dataset
"INSERT INTO #{from} #{literal(values)}"
else
if values.respond_to?(:values)
insert_sql(values.values)
else
"INSERT INTO #{from} VALUES (#{literal(values)})"
end
end
end
end
# Returns an array of insert statements for inserting multiple records.
# This method is used by #multi_insert to format insert statements and
# expects a keys array and and an array of value arrays.
#
# This method may be overriden by descendants.
def multi_insert_sql(columns, values)
table = @opts[:from].first
columns = literal(columns)
values.map do |r|
"INSERT INTO #{table} (#{columns}) VALUES (#{literal(r)})"
end
end
# Formats an UPDATE statement using the given values.
#
# dataset.update_sql(:price => 100, :category => 'software') #=>
# "UPDATE items SET price = 100, category = 'software'"
def update_sql(values = {}, opts = nil, &block)
opts = opts ? @opts.merge(opts) : @opts
if opts[:group]
raise Error::InvalidOperation, "A grouped dataset cannot be updated"
elsif (opts[:from].size > 1) or opts[:join]
raise Error::InvalidOperation, "A joined dataset cannot be updated"
end
sql = "UPDATE #{source_list(@opts[:from])} SET "
if block
sql << block.to_sql(self, :comma_separated => true)
else
# check if array with keys
values = values.to_hash if values.is_a?(Array) && values.keys
if values.is_a?(Hash)
# get values from hash
values = transform_save(values) if @transform
set = values.map do |k, v|
# convert string key into symbol
k = k.to_sym if String === k
"#{literal(k)} = #{literal(v)}"
end.join(COMMA_SEPARATOR)
else
# copy values verbatim
set = values
end
sql << set
end
if where = opts[:where]
sql << " WHERE #{where}"
end
sql
end
# Formats a DELETE statement using the given options and dataset options.
#
# dataset.filter {price >= 100}.delete_sql #=>
# "DELETE FROM items WHERE (price >= 100)"
def delete_sql(opts = nil)
opts = opts ? @opts.merge(opts) : @opts
if opts[:group]
raise Error::InvalidOperation, "Grouped datasets cannot be deleted from"
elsif opts[:from].is_a?(Array) && opts[:from].size > 1
raise Error::InvalidOperation, "Joined datasets cannot be deleted from"
end
sql = "DELETE FROM #{source_list(opts[:from])}"
if where = opts[:where]
sql << " WHERE #{where}"
end
sql
end
# Returns a table reference for use in the FROM clause. If the dataset has
# only a :from option refering to a single table, only the table name is
# returned. Otherwise a subquery is returned.
def to_table_reference(idx = nil)
if opts.keys == [:from] && opts[:from].size == 1
opts[:from].first.to_s
else
idx ? "(#{sql}) t#{idx}" : "(#{sql})"
end
end
# Returns an EXISTS clause for the dataset.
#
# DB.select(1).where(DB[:items].exists).sql
# #=> "SELECT 1 WHERE EXISTS (SELECT * FROM items)"
def exists(opts = nil)
"EXISTS (#{select_sql(opts)})"
end
# If given an integer, the dataset will contain only the first l results.
# If given a range, it will contain only those at offsets within that
# range. If a second argument is given, it is used as an offset.
def limit(l, o = nil)
if @opts[:sql]
return from_self.limit(l, o)
end
opts = {}
if l.is_a? Range
lim = (l.exclude_end? ? l.last - l.first : l.last + 1 - l.first)
opts = {:limit => lim, :offset=>l.first}
elsif o
opts = {:limit => l, :offset => o}
else
opts = {:limit => l}
end
clone(opts)
end
STOCK_COUNT_OPTS = {:select => ["COUNT(*)".lit], :order => nil}.freeze
# Returns the number of records in the dataset.
def count
if @opts[:sql] || @opts[:group]
from_self.count
else
single_value(STOCK_COUNT_OPTS).to_i
end
end
end
end
end
|