1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
/*
Copyright 2011, Google Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
File modified for the Linux Kernel by
Zeev Tarantov <zeev.tarantov@gmail.com>
File modified for Sereal by
Steffen Mueller <smueller@cpan.org>
*/
#include "csnappy_internal.h"
#ifdef __KERNEL__
#include <linux/kernel.h>
#include <linux/module.h>
#endif
#include "csnappy.h"
static INLINE char*
encode_varint32(char *sptr, uint32_t v)
{
uint8_t* ptr = (uint8_t *)sptr;
static const int B = 128;
if (v < (1<<7)) {
*(ptr++) = v;
} else if (v < (1<<14)) {
*(ptr++) = v | B;
*(ptr++) = v>>7;
} else if (v < (1<<21)) {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = v>>14;
} else if (v < (1<<28)) {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = (v>>14) | B;
*(ptr++) = v>>21;
} else {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = (v>>14) | B;
*(ptr++) = (v>>21) | B;
*(ptr++) = v>>28;
}
return (char *)ptr;
}
/*
* *** DO NOT CHANGE THE VALUE OF kBlockSize ***
* New Compression code chops up the input into blocks of at most
* the following size. This ensures that back-references in the
* output never cross kBlockSize block boundaries. This can be
* helpful in implementing blocked decompression. However the
* decompression code should not rely on this guarantee since older
* compression code may not obey it.
*/
#define kBlockLog 15
#define kBlockSize (1 << kBlockLog)
#if defined(__arm__) && !defined(ARCH_ARM_HAVE_UNALIGNED)
static uint8_t* emit_literal(
uint8_t *op,
const uint8_t *src,
const uint8_t *end)
{
uint32_t length = end - src;
uint32_t n = length - 1;
if (!length)
return op;
if (n < 60) {
/* Fits in tag byte */
*op++ = LITERAL | (n << 2);
} else {
/* Encode in upcoming bytes */
uint8_t *base = op;
op++;
do {
*op++ = n & 0xff;
n >>= 8;
} while (n > 0);
*base = LITERAL | ((59 + (op - base - 1)) << 2);
}
memcpy(op, src, length);
return op + length;
}
static uint8_t* emit_copy(
uint8_t *op,
uint32_t offset,
uint32_t len)
{
DCHECK_GT(offset, 0);
/* Emit 64 byte copies but make sure to keep at least four bytes
* reserved */
while (unlikely(len >= 68)) {
*op++ = COPY_2_BYTE_OFFSET | ((64 - 1) << 2);
*op++ = offset & 255;
*op++ = offset >> 8;
len -= 64;
}
/* Emit an extra 60 byte copy if have too much data to fit in one
* copy */
if (unlikely(len > 64)) {
*op++ = COPY_2_BYTE_OFFSET | ((60 - 1) << 2);
*op++ = offset & 255;
*op++ = offset >> 8;
len -= 60;
}
/* Emit remainder */
DCHECK_GE(len, 4);
if ((len < 12) && (offset < 2048)) {
int len_minus_4 = len - 4;
*op++ = COPY_1_BYTE_OFFSET |
((len_minus_4) << 2) |
((offset >> 8) << 5);
*op++ = offset & 0xff;
} else {
*op++ = COPY_2_BYTE_OFFSET | ((len-1) << 2);
*op++ = offset & 255;
*op++ = offset >> 8;
}
return op;
}
static uint32_t find_match_length(
const uint8_t *s1,
const uint8_t *s2,
const uint8_t *s2_end)
{
const uint8_t * const s2_start = s2;
while (s2 < s2_end && *s1++ == *s2++) /*nothing*/;
return s2 - s2_start - 1;
}
static uint32_t hash(uint32_t v)
{
return v * UINT32_C(0x1e35a7bd);
}
char*
csnappy_compress_fragment(
const char *input,
const uint32_t input_size,
char *dst,
void *working_memory,
const int workmem_bytes_power_of_two)
{
const uint8_t * const src_start = (const uint8_t *)input;
const uint8_t * const src_end_minus4 = src_start + input_size - 4;
const uint8_t *src = src_start, *done_upto = src_start, *match;
uint8_t *op = (uint8_t *)dst;
uint16_t *wm = (uint16_t *)working_memory;
int shift = 33 - workmem_bytes_power_of_two;
uint32_t curr_val, curr_hash, match_val, offset, length;
if (unlikely(input_size < 4))
goto the_end;
memset(wm, 0, 1 << workmem_bytes_power_of_two);
for (;;) {
curr_val = (src[1] << 8) | (src[2] << 16) | (src[3] << 24);
do {
src++;
if (unlikely(src >= src_end_minus4))
goto the_end;
curr_val = (curr_val >> 8) | (src[3] << 24);
DCHECK_EQ(curr_val, get_unaligned_le32(src));
curr_hash = hash(curr_val) >> shift;
match = src_start + wm[curr_hash];
DCHECK_LT(match, src);
wm[curr_hash] = src - src_start;
match_val = get_unaligned_le32(match);
} while (likely(curr_val != match_val));
offset = src - match;
length = 4 + find_match_length(
match + 4, src + 4, src_end_minus4 + 4);
DCHECK_EQ(memcmp(src, match, length), 0);
op = emit_literal(op, done_upto, src);
op = emit_copy(op, offset, length);
done_upto = src + length;
src = done_upto - 1;
}
the_end:
op = emit_literal(op, done_upto, src_end_minus4 + 4);
return (char *)op;
}
#else /* !simple */
/*
* Any hash function will produce a valid compressed bitstream, but a good
* hash function reduces the number of collisions and thus yields better
* compression for compressible input, and more speed for incompressible
* input. Of course, it doesn't hurt if the hash function is reasonably fast
* either, as it gets called a lot.
*/
static INLINE uint32_t HashBytes(uint32_t bytes, int shift)
{
uint32_t kMul = 0x1e35a7bd;
return (bytes * kMul) >> shift;
}
static INLINE uint32_t Hash(const char *p, int shift)
{
return HashBytes(UNALIGNED_LOAD32(p), shift);
}
/*
* Return the largest n such that
*
* s1[0,n-1] == s2[0,n-1]
* and n <= (s2_limit - s2).
*
* Does not read *s2_limit or beyond.
* Does not read *(s1 + (s2_limit - s2)) or beyond.
* Requires that s2_limit >= s2.
*
* Separate implementation for x86_64, for speed. Uses the fact that
* x86_64 is little endian.
*/
#if defined(__x86_64__) || defined(__aarch64__)
static INLINE int
FindMatchLength(const char *s1, const char *s2, const char *s2_limit)
{
uint64_t x;
int matched, matching_bits;
DCHECK_GE(s2_limit, s2);
matched = 0;
/*
* Find out how long the match is. We loop over the data 64 bits at a
* time until we find a 64-bit block that doesn't match; then we find
* the first non-matching bit and use that to calculate the total
* length of the match.
*/
while (likely(s2 <= s2_limit - 8)) {
if (unlikely(UNALIGNED_LOAD64(s1 + matched) ==
UNALIGNED_LOAD64(s2))) {
s2 += 8;
matched += 8;
} else {
/*
* On current (mid-2008) Opteron models there is a 3%
* more efficient code sequence to find the first
* non-matching byte. However, what follows is ~10%
* better on Intel Core 2 and newer, and we expect AMD's
* bsf instruction to improve.
*/
x = UNALIGNED_LOAD64(s1 + matched) ^
UNALIGNED_LOAD64(s2);
matching_bits = FindLSBSetNonZero64(x);
matched += matching_bits >> 3;
return matched;
}
}
while (likely(s2 < s2_limit)) {
if (likely(s1[matched] == *s2)) {
++s2;
++matched;
} else {
return matched;
}
}
return matched;
}
#else /* !defined(__x86_64__) && !defined(__aarch64__) */
static INLINE int
FindMatchLength(const char *s1, const char *s2, const char *s2_limit)
{
/* Implementation based on the x86-64 version, above. */
int matched = 0;
DCHECK_GE(s2_limit, s2);
while (s2 <= s2_limit - 4 &&
UNALIGNED_LOAD32(s2) == UNALIGNED_LOAD32(s1 + matched)) {
s2 += 4;
matched += 4;
}
#if __BYTE_ORDER == __LITTLE_ENDIAN
if (s2 <= s2_limit - 4) {
uint32_t x = UNALIGNED_LOAD32(s1 + matched) ^
UNALIGNED_LOAD32(s2);
int matching_bits = FindLSBSetNonZero(x);
matched += matching_bits >> 3;
} else {
while ((s2 < s2_limit) && (s1[matched] == *s2)) {
++s2;
++matched;
}
}
#else
while ((s2 < s2_limit) && (s1[matched] == *s2)) {
++s2;
++matched;
}
#endif
return matched;
}
#endif /* !defined(__x86_64__) && !defined(__aarch64__) */
static INLINE char*
EmitLiteral(char *op, const char *literal, int len, int allow_fast_path)
{
int n = len - 1; /* Zero-length literals are disallowed */
if (n < 60) {
/* Fits in tag byte */
*op++ = LITERAL | (n << 2);
/*
The vast majority of copies are below 16 bytes, for which a
call to memcpy is overkill. This fast path can sometimes
copy up to 15 bytes too much, but that is okay in the
main loop, since we have a bit to go on for both sides:
- The input will always have kInputMarginBytes = 15 extra
available bytes, as long as we're in the main loop, and
if not, allow_fast_path = false.
- The output will always have 32 spare bytes (see
snappy_max_compressed_length).
*/
if (allow_fast_path && len <= 16) {
UnalignedCopy64(literal, op);
UnalignedCopy64(literal + 8, op + 8);
return op + len;
}
} else {
/* Encode in upcoming bytes */
char *base = op;
int count = 0;
op++;
while (n > 0) {
*op++ = n & 0xff;
n >>= 8;
count++;
}
DCHECK_GE(count, 1);
DCHECK_LE(count, 4);
*base = LITERAL | ((59+count) << 2);
}
memcpy(op, literal, len);
return op + len;
}
static INLINE char*
EmitCopyLessThan64(char *op, int offset, int len)
{
DCHECK_LE(len, 64);
DCHECK_GE(len, 4);
DCHECK_LT(offset, 65536);
if ((len < 12) && (offset < 2048)) {
int len_minus_4 = len - 4;
DCHECK_LT(len_minus_4, 8); /* Must fit in 3 bits */
*op++ = COPY_1_BYTE_OFFSET +
((len_minus_4) << 2) +
((offset >> 8) << 5);
*op++ = offset & 0xff;
} else {
*op++ = COPY_2_BYTE_OFFSET + ((len-1) << 2);
put_unaligned_le16(offset, op);
op += 2;
}
return op;
}
static INLINE char*
EmitCopy(char *op, int offset, int len)
{
/* Emit 64 byte copies but make sure to keep at least four bytes
* reserved */
while (len >= 68) {
op = EmitCopyLessThan64(op, offset, 64);
len -= 64;
}
/* Emit an extra 60 byte copy if have too much data to fit in one
* copy */
if (len > 64) {
op = EmitCopyLessThan64(op, offset, 60);
len -= 60;
}
/* Emit remainder */
op = EmitCopyLessThan64(op, offset, len);
return op;
}
/*
For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will
equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
empirically found that overlapping loads such as
UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
We have different versions for 64- and 32-bit; ideally we would avoid the
two functions and just INLINE the UNALIGNED_LOAD64 call into
GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
enough to avoid loading the value multiple times then. For 64-bit, the load
is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
done at GetUint32AtOffset() time.
*/
#if defined(__x86_64__) || (__SIZEOF_SIZE_T__ == 8)
typedef uint64_t EightBytesReference;
static INLINE EightBytesReference GetEightBytesAt(const char* ptr) {
return UNALIGNED_LOAD64(ptr);
}
static INLINE uint32_t GetUint32AtOffset(uint64_t v, int offset) {
DCHECK_GE(offset, 0);
DCHECK_LE(offset, 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
return v >> (8 * offset);
#else
return v >> (32 - 8 * offset);
#endif
}
#else /* !ARCH_K8 */
typedef const char* EightBytesReference;
static INLINE EightBytesReference GetEightBytesAt(const char* ptr) {
return ptr;
}
static INLINE uint32_t GetUint32AtOffset(const char* v, int offset) {
DCHECK_GE(offset, 0);
DCHECK_LE(offset, 4);
return UNALIGNED_LOAD32(v + offset);
}
#endif /* !ARCH_K8 */
#define kInputMarginBytes 15
char*
csnappy_compress_fragment(
const char *input,
const uint32_t input_size,
char *op,
void *working_memory,
const int workmem_bytes_power_of_two)
{
const char *ip, *ip_end, *base_ip, *next_emit, *ip_limit, *next_ip,
*candidate, *base;
uint16_t *table = (uint16_t *)working_memory;
EightBytesReference input_bytes;
uint32_t hash, next_hash, prev_hash, cur_hash, skip, candidate_bytes;
int shift, matched;
DCHECK_GE(workmem_bytes_power_of_two, 9);
DCHECK_LE(workmem_bytes_power_of_two, 15);
/* Table of 2^X bytes, need (X-1) bits to address table of uint16_t.
* How many bits of 32bit hash function result are discarded? */
shift = 33 - workmem_bytes_power_of_two;
/* "ip" is the input pointer, and "op" is the output pointer. */
ip = input;
DCHECK_LE(input_size, kBlockSize);
ip_end = input + input_size;
base_ip = ip;
/* Bytes in [next_emit, ip) will be emitted as literal bytes. Or
[next_emit, ip_end) after the main loop. */
next_emit = ip;
if (unlikely(input_size < kInputMarginBytes))
goto emit_remainder;
memset(working_memory, 0, 1 << workmem_bytes_power_of_two);
ip_limit = input + input_size - kInputMarginBytes;
next_hash = Hash(++ip, shift);
main_loop:
DCHECK_LT(next_emit, ip);
/*
* The body of this loop calls EmitLiteral once and then EmitCopy one or
* more times. (The exception is that when we're close to exhausting
* the input we goto emit_remainder.)
*
* In the first iteration of this loop we're just starting, so
* there's nothing to copy, so calling EmitLiteral once is
* necessary. And we only start a new iteration when the
* current iteration has determined that a call to EmitLiteral will
* precede the next call to EmitCopy (if any).
*
* Step 1: Scan forward in the input looking for a 4-byte-long match.
* If we get close to exhausting the input then goto emit_remainder.
*
* Heuristic match skipping: If 32 bytes are scanned with no matches
* found, start looking only at every other byte. If 32 more bytes are
* scanned, look at every third byte, etc.. When a match is found,
* immediately go back to looking at every byte. This is a small loss
* (~5% performance, ~0.1% density) for compressible data due to more
* bookkeeping, but for non-compressible data (such as JPEG) it's a huge
* win since the compressor quickly "realizes" the data is incompressible
* and doesn't bother looking for matches everywhere.
*
* The "skip" variable keeps track of how many bytes there are since the
* last match; dividing it by 32 (ie. right-shifting by five) gives the
* number of bytes to move ahead for each iteration.
*/
skip = 32;
next_ip = ip;
do {
ip = next_ip;
hash = next_hash;
DCHECK_EQ(hash, Hash(ip, shift));
next_ip = ip + (skip++ >> 5);
if (unlikely(next_ip > ip_limit))
goto emit_remainder;
next_hash = Hash(next_ip, shift);
candidate = base_ip + table[hash];
DCHECK_GE(candidate, base_ip);
DCHECK_LT(candidate, ip);
table[hash] = ip - base_ip;
} while (likely(UNALIGNED_LOAD32(ip) !=
UNALIGNED_LOAD32(candidate)));
/*
* Step 2: A 4-byte match has been found. We'll later see if more
* than 4 bytes match. But, prior to the match, input
* bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
*/
DCHECK_LE(next_emit + 16, ip_end);
op = EmitLiteral(op, next_emit, ip - next_emit, 1);
/*
* Step 3: Call EmitCopy, and then see if another EmitCopy could
* be our next move. Repeat until we find no match for the
* input immediately after what was consumed by the last EmitCopy call.
*
* If we exit this loop normally then we need to call EmitLiteral next,
* though we don't yet know how big the literal will be. We handle that
* by proceeding to the next iteration of the main loop. We also can exit
* this loop via goto if we get close to exhausting the input.
*/
candidate_bytes = 0;
do {
/* We have a 4-byte match at ip, and no need to emit any
"literal bytes" prior to ip. */
base = ip;
matched = 4 + FindMatchLength(candidate + 4, ip + 4, ip_end);
ip += matched;
DCHECK_EQ(0, memcmp(base, candidate, matched));
op = EmitCopy(op, base - candidate, matched);
/* We could immediately start working at ip now, but to improve
compression we first update table[Hash(ip - 1, ...)]. */
next_emit = ip;
if (unlikely(ip >= ip_limit))
goto emit_remainder;
input_bytes = GetEightBytesAt(ip - 1);
prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
table[prev_hash] = ip - base_ip - 1;
cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
candidate = base_ip + table[cur_hash];
candidate_bytes = UNALIGNED_LOAD32(candidate);
table[cur_hash] = ip - base_ip;
} while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
++ip;
goto main_loop;
emit_remainder:
/* Emit the remaining bytes as a literal */
if (next_emit < ip_end)
op = EmitLiteral(op, next_emit, ip_end - next_emit, 0);
return op;
}
#endif /* !simple */
#if defined(__KERNEL__) && !defined(STATIC)
EXPORT_SYMBOL(csnappy_compress_fragment);
#endif
uint32_t __attribute__((const))
csnappy_max_compressed_length(uint32_t source_len)
{
return 32 + source_len + source_len/6;
}
#if defined(__KERNEL__) && !defined(STATIC)
EXPORT_SYMBOL(csnappy_max_compressed_length);
#endif
void
csnappy_compress(
const char *input,
uint32_t input_length,
char *compressed,
uint32_t *compressed_length,
void *working_memory,
const int workmem_bytes_power_of_two)
{
int workmem_size;
int num_to_read;
uint32_t written = 0;
char *p = encode_varint32(compressed, input_length);
written += (p - compressed);
compressed = p;
while (input_length > 0) {
num_to_read = min(input_length, (uint32_t)kBlockSize);
workmem_size = workmem_bytes_power_of_two;
if (unlikely(num_to_read < kBlockSize)) {
for (workmem_size = 9;
workmem_size < workmem_bytes_power_of_two;
++workmem_size) {
if ((1 << (workmem_size-1)) >= num_to_read)
break;
}
}
p = csnappy_compress_fragment(
input, num_to_read, compressed,
working_memory, workmem_size);
written += (p - compressed);
compressed = p;
input_length -= num_to_read;
input += num_to_read;
}
*compressed_length = written;
}
#if defined(__KERNEL__) && !defined(STATIC)
EXPORT_SYMBOL(csnappy_compress);
MODULE_LICENSE("BSD");
MODULE_DESCRIPTION("Snappy Compressor");
#endif
|