File: Island.cpp

package info (click to toggle)
libsfml 3.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 13,704 kB
  • sloc: cpp: 52,754; ansic: 24,944; objc: 668; sh: 172; xml: 25; makefile: 18
file content (614 lines) | stat: -rw-r--r-- 20,985 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics.hpp>

#define STB_PERLIN_IMPLEMENTATION
#include <stb_perlin.h>

#include <algorithm>
#include <array>
#include <deque>
#include <iostream>
#include <mutex>
#include <sstream>
#include <thread>
#include <vector>

#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>


namespace
{
// Width and height of the application window
constexpr sf::Vector2u windowSize(800, 600);

// Resolution of the generated terrain
constexpr sf::Vector2u resolution(800, 600);

// Thread pool parameters
constexpr unsigned int threadCount  = 4;
constexpr unsigned int blockCount   = 32;
constexpr unsigned int rowBlockSize = (resolution.y / blockCount) + 1;

struct WorkItem
{
    sf::Vertex*  targetBuffer{};
    unsigned int index{};
};

std::deque<WorkItem>     workQueue;
std::vector<std::thread> threads;
int                      pendingWorkCount    = 0;
bool                     workPending         = true;
bool                     bufferUploadPending = false;
std::recursive_mutex     workQueueMutex;

struct Setting
{
    const char* name{};
    float*      value{};
};

// Terrain noise parameters
constexpr int perlinOctaves = 3;

float perlinFrequency     = 7.0f;
float perlinFrequencyBase = 4.0f;

// Terrain generation parameters
float heightBase          = 0.0f;
float edgeFactor          = 0.9f;
float edgeDropoffExponent = 1.5f;

float snowcapHeight = 0.6f;

// Terrain lighting parameters
float heightFactor  = static_cast<float>(windowSize.y) / 2.0f;
float heightFlatten = 3.0f;
float lightFactor   = 0.7f;


////////////////////////////////////////////////////////////
/// Get the terrain elevation at the given coordinates.
///
////////////////////////////////////////////////////////////
float getElevation(sf::Vector2u position)
{
    const sf::Vector2f normalized = sf::Vector2f(position).componentWiseDiv(sf::Vector2f(resolution)) -
                                    sf::Vector2f(0.5f, 0.5f);

    float elevation = 0.0f;

    for (int i = 0; i < perlinOctaves; ++i)
    {
        const sf::Vector2f scaled = normalized * perlinFrequency * static_cast<float>(std::pow(perlinFrequencyBase, i));
        elevation += stb_perlin_noise3(scaled.x, scaled.y, 0, 0, 0, 0) *
                     static_cast<float>(std::pow(perlinFrequencyBase, -i));
    }

    elevation = (elevation + 1.f) / 2.f;

    const float distance = 2.0f * normalized.length();
    elevation            = (elevation + heightBase) * (1.0f - edgeFactor * std::pow(distance, edgeDropoffExponent));
    elevation            = std::clamp(elevation, 0.0f, 1.0f);

    return elevation;
}


////////////////////////////////////////////////////////////
/// Get the terrain moisture at the given coordinates.
///
////////////////////////////////////////////////////////////
float getMoisture(sf::Vector2u position)
{
    const sf::Vector2f normalized = sf::Vector2f(position).componentWiseDiv(sf::Vector2f(resolution)) -
                                    sf::Vector2f(0.5f, 0.5f);
    const sf::Vector2f transformed = normalized * 4.f + sf::Vector2f(0.5f, 0.5f);

    const float moisture = stb_perlin_noise3(transformed.x, transformed.y, 0, 0, 0, 0);

    return (moisture + 1.f) / 2.f;
}


////////////////////////////////////////////////////////////
/// Get the lowlands terrain color for the given moisture.
///
////////////////////////////////////////////////////////////
sf::Color colorFromFloats(float r, float g, float b)
{
    return {static_cast<std::uint8_t>(r), static_cast<std::uint8_t>(g), static_cast<std::uint8_t>(b)};
}

sf::Color getLowlandsTerrainColor(float moisture)
{
    if (moisture < 0.27f)
        return colorFromFloats(240, 240, 180);
    if (moisture < 0.3f)
        return colorFromFloats(240 - (240 * (moisture - 0.27f) / 0.03f),
                               240 - (40 * (moisture - 0.27f) / 0.03f),
                               180 - (180 * (moisture - 0.27f) / 0.03f));
    if (moisture < 0.4f)
        return colorFromFloats(0, 200, 0);
    if (moisture < 0.48f)
        return colorFromFloats(0, 200 - (40 * (moisture - 0.4f) / 0.08f), 0);
    if (moisture < 0.6f)
        return colorFromFloats(0, 160, 0);
    if (moisture < 0.7f)
        return colorFromFloats((34 * (moisture - 0.6f) / 0.1f),
                               160 - (60 * (moisture - 0.6f) / 0.1f),
                               (34 * (moisture - 0.6f) / 0.1f));
    return colorFromFloats(34, 100, 34);
}


////////////////////////////////////////////////////////////
/// Get the highlands terrain color for the given elevation
/// and moisture.
///
////////////////////////////////////////////////////////////
sf::Color getHighlandsTerrainColor(float elevation, float moisture)
{
    const sf::Color lowlandsColor = getLowlandsTerrainColor(moisture);

    const sf::Color color = moisture < 0.6f ? sf::Color(112, 128, 144)
                                            : colorFromFloats(112 + (110 * (moisture - 0.6f) / 0.4f),
                                                              128 + (56 * (moisture - 0.6f) / 0.4f),
                                                              144 - (9 * (moisture - 0.6f) / 0.4f));

    const float factor = std::min((elevation - 0.4f) / 0.1f, 1.f);

    return colorFromFloats(lowlandsColor.r * (1.f - factor) + color.r * factor,
                           lowlandsColor.g * (1.f - factor) + color.g * factor,
                           lowlandsColor.b * (1.f - factor) + color.b * factor);
}


////////////////////////////////////////////////////////////
/// Get the snowcap terrain color for the given elevation
/// and moisture.
///
////////////////////////////////////////////////////////////
sf::Color getSnowcapTerrainColor(float elevation, float moisture)
{
    const sf::Color highlandsColor = getHighlandsTerrainColor(elevation, moisture);

    const sf::Color color = sf::Color::White;

    const float factor = std::min((elevation - snowcapHeight) / 0.05f, 1.f);

    return colorFromFloats(highlandsColor.r * (1.f - factor) + color.r * factor,
                           highlandsColor.g * (1.f - factor) + color.g * factor,
                           highlandsColor.b * (1.f - factor) + color.b * factor);
}


////////////////////////////////////////////////////////////
/// Get the terrain color for the given elevation and
/// moisture.
///
////////////////////////////////////////////////////////////
sf::Color getTerrainColor(float elevation, float moisture)
{
    if (elevation < 0.11f)
        return {0, 0, static_cast<std::uint8_t>(elevation / 0.11f * 74.f + 181.0f)};
    if (elevation < 0.14f)
        return {static_cast<std::uint8_t>(std::pow((elevation - 0.11f) / 0.03f, 0.3f) * 48.f),
                static_cast<std::uint8_t>(std::pow((elevation - 0.11f) / 0.03f, 0.3f) * 48.f),
                255};
    if (elevation < 0.16f)
        return {static_cast<std::uint8_t>((elevation - 0.14f) * 128.f / 0.02f + 48.f),
                static_cast<std::uint8_t>((elevation - 0.14f) * 128.f / 0.02f + 48.f),
                static_cast<std::uint8_t>(127.0f + (0.16f - elevation) * 128.f / 0.02f)};
    if (elevation < 0.17f)
        return {240, 230, 140};
    if (elevation < 0.4f)
        return getLowlandsTerrainColor(moisture);
    if (elevation < snowcapHeight)
        return getHighlandsTerrainColor(elevation, moisture);
    return getSnowcapTerrainColor(elevation, moisture);
}


////////////////////////////////////////////////////////////
/// Compute a compressed representation of the surface
/// normal based on the given coordinates, and the elevation
/// of the 4 adjacent neighbours.
///
////////////////////////////////////////////////////////////
sf::Vector2f computeNormal(float left, float right, float bottom, float top)
{
    const sf::Vector3f deltaX(1, 0, (std::pow(right, heightFlatten) - std::pow(left, heightFlatten)) * heightFactor);
    const sf::Vector3f deltaY(0, 1, (std::pow(top, heightFlatten) - std::pow(bottom, heightFlatten)) * heightFactor);

    sf::Vector3f crossProduct = deltaX.cross(deltaY);

    // Scale cross product to make z component 1.0f so we can drop it
    crossProduct /= crossProduct.z;

    // Return "compressed" normal
    return {crossProduct.x, crossProduct.y};
}


////////////////////////////////////////////////////////////
/// Compute the vertex representing the terrain at the given
/// coordinates.
///
////////////////////////////////////////////////////////////
sf::Vertex computeVertex(sf::Vector2u position)
{
    static constexpr auto scalingFactors = sf::Vector2f(windowSize).componentWiseDiv(sf::Vector2f(resolution));
    sf::Vertex            vertex;
    vertex.position  = sf::Vector2f(position).componentWiseMul(scalingFactors);
    vertex.color     = getTerrainColor(getElevation(position), getMoisture(position));
    vertex.texCoords = computeNormal(getElevation(position - sf::Vector2u(1, 0)),
                                     getElevation(position + sf::Vector2u(1, 0)),
                                     getElevation(position + sf::Vector2u(0, 1)),
                                     getElevation(position - sf::Vector2u(0, 1)));
    return vertex;
}


////////////////////////////////////////////////////////////
/// Process a terrain generation work item. Use the vector
/// of vertices as scratch memory and upload the data to
/// the vertex buffer when done.
///
////////////////////////////////////////////////////////////
void processWorkItem(std::vector<sf::Vertex>& vertices, const WorkItem& workItem)
{
    const unsigned int rowStart = rowBlockSize * workItem.index;

    if (rowStart >= resolution.y)
        return;

    const unsigned int rowEnd   = std::min(rowStart + rowBlockSize, resolution.y);
    const unsigned int rowCount = rowEnd - rowStart;

    for (unsigned int y = rowStart; y < rowEnd; ++y)
    {
        for (unsigned int x = 0; x < resolution.x; ++x)
        {
            const unsigned int arrayIndexBase = ((y - rowStart) * resolution.x + x) * 6;

            // Top left corner (first triangle)
            if (x > 0)
            {
                vertices[arrayIndexBase + 0] = vertices[arrayIndexBase - 6 + 5];
            }
            else if (y > rowStart)
            {
                vertices[arrayIndexBase + 0] = vertices[arrayIndexBase - resolution.x * 6 + 1];
            }
            else
            {
                vertices[arrayIndexBase + 0] = computeVertex({x, y});
            }

            // Bottom left corner (first triangle)
            if (x > 0)
            {
                vertices[arrayIndexBase + 1] = vertices[arrayIndexBase - 6 + 2];
            }
            else
            {
                vertices[arrayIndexBase + 1] = computeVertex({x, y + 1});
            }

            // Bottom right corner (first triangle)
            vertices[arrayIndexBase + 2] = computeVertex({x + 1, y + 1});

            // Top left corner (second triangle)
            vertices[arrayIndexBase + 3] = vertices[arrayIndexBase + 0];

            // Bottom right corner (second triangle)
            vertices[arrayIndexBase + 4] = vertices[arrayIndexBase + 2];

            // Top right corner (second triangle)
            if (y > rowStart)
            {
                vertices[arrayIndexBase + 5] = vertices[arrayIndexBase - resolution.x * 6 + 2];
            }
            else
            {
                vertices[arrayIndexBase + 5] = computeVertex({x + 1, y});
            }
        }
    }

    // Copy the resulting geometry from our thread-local buffer into the target buffer
    std::memcpy(workItem.targetBuffer + (resolution.x * rowStart * 6),
                vertices.data(),
                sizeof(sf::Vertex) * resolution.x * rowCount * 6);
}


////////////////////////////////////////////////////////////
/// Worker thread entry point. We use a thread pool to avoid
/// the heavy cost of constantly recreating and starting
/// new threads whenever we need to regenerate the terrain.
///
////////////////////////////////////////////////////////////
void threadFunction()
{
    std::vector<sf::Vertex> vertices(resolution.x * rowBlockSize * 6);

    WorkItem workItem = {nullptr, 0};

    // Loop until the application exits
    for (;;)
    {
        workItem.targetBuffer = nullptr;

        // Check if there are new work items in the queue
        {
            const std::lock_guard lock(workQueueMutex);

            if (!workPending)
                return;

            if (!workQueue.empty())
            {
                workItem = workQueue.front();
                workQueue.pop_front();
            }
        }

        // If we didn't receive a new work item, keep looping
        if (!workItem.targetBuffer)
        {
            sf::sleep(sf::milliseconds(10));

            continue;
        }

        processWorkItem(vertices, workItem);

        {
            const std::lock_guard lock(workQueueMutex);

            --pendingWorkCount;
        }
    }
}


////////////////////////////////////////////////////////////
/// Terrain generation entry point. This queues up the
/// generation work items which the worker threads dequeue
/// and process.
///
////////////////////////////////////////////////////////////
void generateTerrain(sf::Vertex* buffer)
{
    bufferUploadPending = true;

    // Make sure the work queue is empty before queuing new work
    for (;;)
    {
        {
            const std::lock_guard lock(workQueueMutex);

            if (pendingWorkCount == 0u)
                break;
        }

        sf::sleep(sf::milliseconds(10));
    }

    // Queue all the new work items
    {
        const std::lock_guard lock(workQueueMutex);

        for (unsigned int i = 0; i < blockCount; ++i)
        {
            const WorkItem workItem = {buffer, i};
            workQueue.push_back(workItem);
        }

        pendingWorkCount = blockCount;
    }
}
} // namespace


////////////////////////////////////////////////////////////
/// Entry point of application
///
/// \return Application exit code
///
////////////////////////////////////////////////////////////
int main()
{
    // Create the window of the application
    sf::RenderWindow window(sf::VideoMode(windowSize), "SFML Island", sf::Style::Titlebar | sf::Style::Close);
    window.setVerticalSyncEnabled(true);

    const sf::Font font("resources/tuffy.ttf");

    // Create all of our graphics resources
    sf::Text         hudText(font);
    sf::Text         statusText(font);
    sf::Shader       terrainShader;
    sf::RenderStates terrainStates;
    sf::VertexBuffer terrain(sf::PrimitiveType::Triangles, sf::VertexBuffer::Usage::Static);

    // Set up our text drawables
    statusText.setCharacterSize(28);
    statusText.setFillColor(sf::Color::White);
    statusText.setOutlineColor(sf::Color::Black);
    statusText.setOutlineThickness(2.0f);

    hudText.setCharacterSize(14);
    hudText.setFillColor(sf::Color::White);
    hudText.setOutlineColor(sf::Color::Black);
    hudText.setOutlineThickness(2.0f);
    hudText.setPosition({5.0f, 5.0f});

    // Staging buffer for our terrain data that we will upload to our VertexBuffer
    std::vector<sf::Vertex> terrainStagingBuffer;

    // Set up our graphics resources and set the status text accordingly
    if (!sf::VertexBuffer::isAvailable() || !sf::Shader::isAvailable())
    {
        statusText.setString("Shaders and/or Vertex Buffers Unsupported");
    }
    else if (!terrainShader.loadFromFile("resources/terrain.vert", "resources/terrain.frag"))
    {
        statusText.setString("Failed to load shader program");
    }
    else
    {
        // Start up our thread pool
        for (unsigned int i = 0; i < threadCount; ++i)
        {
            threads.emplace_back(threadFunction);
        }

        // Create our VertexBuffer with enough space to hold all the terrain geometry
        if (!terrain.create(resolution.x * resolution.y * 6))
        {
            std::cerr << "Failed to create vertex buffer" << std::endl;
            return EXIT_FAILURE;
        }

        // Resize the staging buffer to be able to hold all the terrain geometry
        terrainStagingBuffer.resize(resolution.x * resolution.y * 6);

        // Generate the initial terrain
        generateTerrain(terrainStagingBuffer.data());

        statusText.setString("Generating Terrain...");

        // Set up the render states
        terrainStates = sf::RenderStates(&terrainShader);
    }

    // Center the status text
    statusText.setPosition((sf::Vector2f(windowSize) - statusText.getLocalBounds().size) / 2.f);

    // Set up an array of pointers to our settings for arrow navigation
    constexpr std::array<Setting, 9> settings = {
        {{"perlinFrequency", &perlinFrequency},
         {"perlinFrequencyBase", &perlinFrequencyBase},
         {"heightBase", &heightBase},
         {"edgeFactor", &edgeFactor},
         {"edgeDropoffExponent", &edgeDropoffExponent},
         {"snowcapHeight", &snowcapHeight},
         {"heightFactor", &heightFactor},
         {"heightFlatten", &heightFlatten},
         {"lightFactor", &lightFactor}}};

    std::size_t currentSetting = 0;

    std::ostringstream osstr;
    sf::Clock          clock;

    while (window.isOpen())
    {
        // Handle events
        while (const std::optional event = window.pollEvent())
        {
            // Window closed or escape key pressed: exit
            if (event->is<sf::Event::Closed>() ||
                (event->is<sf::Event::KeyPressed>() &&
                 event->getIf<sf::Event::KeyPressed>()->code == sf::Keyboard::Key::Escape))
            {
                window.close();
                break;
            }

            // Arrow key pressed:
            // TODO Replace use of getNativeHandle() when validity function is added
            if (terrainShader.getNativeHandle() != 0 && event->is<sf::Event::KeyPressed>())
            {
                switch (event->getIf<sf::Event::KeyPressed>()->code)
                {
                    case sf::Keyboard::Key::Enter:
                        generateTerrain(terrainStagingBuffer.data());
                        break;
                    case sf::Keyboard::Key::Down:
                        currentSetting = (currentSetting + 1) % settings.size();
                        break;
                    case sf::Keyboard::Key::Up:
                        currentSetting = (currentSetting + settings.size() - 1) % settings.size();
                        break;
                    case sf::Keyboard::Key::Left:
                        *(settings[currentSetting].value) -= 0.1f;
                        break;
                    case sf::Keyboard::Key::Right:
                        *(settings[currentSetting].value) += 0.1f;
                        break;
                    default:
                        break;
                }
            }
        }

        // Clear, draw graphics objects and display
        window.clear();

        window.draw(statusText);

        if (terrainShader.getNativeHandle() != 0)
        {
            {
                const std::lock_guard lock(workQueueMutex);

                // Don't bother updating/drawing the VertexBuffer while terrain is being regenerated
                if (!pendingWorkCount)
                {
                    // If there is new data pending to be uploaded to the VertexBuffer, do it now
                    if (bufferUploadPending)
                    {
                        if (!terrain.update(terrainStagingBuffer.data()))
                        {
                            std::cerr << "Failed to update vertex buffer" << std::endl;
                            return EXIT_FAILURE;
                        }

                        bufferUploadPending = false;
                    }

                    terrainShader.setUniform("lightFactor", lightFactor);
                    window.draw(terrain, terrainStates);
                }
            }

            // Update and draw the HUD text
            osstr.str("");
            osstr << "Frame:  " << clock.restart().asMilliseconds() << "ms\n"
                  << "perlinOctaves:  " << perlinOctaves << "\n\n"
                  << "Use the arrow keys to change the values.\nUse the return key to regenerate the terrain.\n\n";

            for (std::size_t i = 0; i < settings.size(); ++i)
                osstr << ((i == currentSetting) ? ">>  " : "       ") << settings[i].name << ":  "
                      << *(settings[i].value) << '\n';

            hudText.setString(osstr.str());

            window.draw(hudText);
        }

        // Display things on screen
        window.display();
    }

    // Shut down our thread pool
    {
        const std::lock_guard lock(workQueueMutex);
        workPending = false;
    }

    while (!threads.empty())
    {
        threads.back().join();
        threads.pop_back();
    }
}