1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2025 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Rect.hpp> // NOLINT(misc-header-include-cycle)
namespace sf
{
////////////////////////////////////////////////////////////
template <typename T>
constexpr Rect<T>::Rect(Vector2<T> thePosition, Vector2<T> theSize) : position(thePosition), size(theSize)
{
}
////////////////////////////////////////////////////////////
template <typename T>
template <typename U>
constexpr Rect<T>::operator Rect<U>() const
{
return Rect<U>(Vector2<U>(position), Vector2<U>(size));
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr bool Rect<T>::contains(Vector2<T> point) const
{
// Not using 'std::min' and 'std::max' to avoid depending on '<algorithm>'
const auto min = [](T a, T b) { return (a < b) ? a : b; };
const auto max = [](T a, T b) { return (a < b) ? b : a; };
// Rectangles with negative dimensions are allowed, so we must handle them correctly
// Compute the real min and max of the rectangle on both axes
const T minX = min(position.x, static_cast<T>(position.x + size.x));
const T maxX = max(position.x, static_cast<T>(position.x + size.x));
const T minY = min(position.y, static_cast<T>(position.y + size.y));
const T maxY = max(position.y, static_cast<T>(position.y + size.y));
return (point.x >= minX) && (point.x < maxX) && (point.y >= minY) && (point.y < maxY);
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr std::optional<Rect<T>> Rect<T>::findIntersection(const Rect<T>& rectangle) const
{
// Not using 'std::min' and 'std::max' to avoid depending on '<algorithm>'
const auto min = [](T a, T b) { return (a < b) ? a : b; };
const auto max = [](T a, T b) { return (a < b) ? b : a; };
// Rectangles with negative dimensions are allowed, so we must handle them correctly
// Compute the min and max of the first rectangle on both axes
const T r1MinX = min(position.x, static_cast<T>(position.x + size.x));
const T r1MaxX = max(position.x, static_cast<T>(position.x + size.x));
const T r1MinY = min(position.y, static_cast<T>(position.y + size.y));
const T r1MaxY = max(position.y, static_cast<T>(position.y + size.y));
// Compute the min and max of the second rectangle on both axes
const T r2MinX = min(rectangle.position.x, static_cast<T>(rectangle.position.x + rectangle.size.x));
const T r2MaxX = max(rectangle.position.x, static_cast<T>(rectangle.position.x + rectangle.size.x));
const T r2MinY = min(rectangle.position.y, static_cast<T>(rectangle.position.y + rectangle.size.y));
const T r2MaxY = max(rectangle.position.y, static_cast<T>(rectangle.position.y + rectangle.size.y));
// Compute the intersection boundaries
const T interLeft = max(r1MinX, r2MinX);
const T interTop = max(r1MinY, r2MinY);
const T interRight = min(r1MaxX, r2MaxX);
const T interBottom = min(r1MaxY, r2MaxY);
// If the intersection is valid (positive non zero area), then there is an intersection
if ((interLeft < interRight) && (interTop < interBottom))
{
return Rect<T>({interLeft, interTop}, {interRight - interLeft, interBottom - interTop});
}
return std::nullopt;
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T> Rect<T>::getCenter() const
{
return position + size / T{2};
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr bool operator==(const Rect<T>& lhs, const Rect<T>& rhs)
{
return (lhs.position == rhs.position) && (lhs.size == rhs.size);
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr bool operator!=(const Rect<T>& lhs, const Rect<T>& rhs)
{
return !(lhs == rhs);
}
} // namespace sf
|