File: RenderTarget.hpp

package info (click to toggle)
libsfml 3.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 13,704 kB
  • sloc: cpp: 52,754; ansic: 24,944; objc: 668; sh: 172; xml: 25; makefile: 18
file content (606 lines) | stat: -rw-r--r-- 24,897 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2025 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
//    you must not claim that you wrote the original software.
//    If you use this software in a product, an acknowledgment
//    in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
//    and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////

#pragma once

////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Export.hpp>

#include <SFML/Graphics/BlendMode.hpp>
#include <SFML/Graphics/Color.hpp>
#include <SFML/Graphics/CoordinateType.hpp>
#include <SFML/Graphics/PrimitiveType.hpp>
#include <SFML/Graphics/Rect.hpp>
#include <SFML/Graphics/RenderStates.hpp>
#include <SFML/Graphics/StencilMode.hpp>
#include <SFML/Graphics/Vertex.hpp>
#include <SFML/Graphics/View.hpp>

#include <SFML/System/Vector2.hpp>

#include <array>

#include <cstddef>
#include <cstdint>


namespace sf
{
class Drawable;
class Shader;
class Texture;
class Transform;
class VertexBuffer;

////////////////////////////////////////////////////////////
/// \brief Base class for all render targets (window, texture, ...)
///
////////////////////////////////////////////////////////////
class SFML_GRAPHICS_API RenderTarget
{
public:
    ////////////////////////////////////////////////////////////
    /// \brief Destructor
    ///
    ////////////////////////////////////////////////////////////
    virtual ~RenderTarget() = default;

    ////////////////////////////////////////////////////////////
    /// \brief Deleted copy constructor
    ///
    ////////////////////////////////////////////////////////////
    RenderTarget(const RenderTarget&) = delete;

    ////////////////////////////////////////////////////////////
    /// \brief Deleted copy assignment
    ///
    ////////////////////////////////////////////////////////////
    RenderTarget& operator=(const RenderTarget&) = delete;

    ////////////////////////////////////////////////////////////
    /// \brief Move constructor
    ///
    ////////////////////////////////////////////////////////////
    RenderTarget(RenderTarget&&) noexcept = default;

    ////////////////////////////////////////////////////////////
    /// \brief Move assignment
    ///
    ////////////////////////////////////////////////////////////
    RenderTarget& operator=(RenderTarget&&) noexcept = default;

    ////////////////////////////////////////////////////////////
    /// \brief Clear the entire target with a single color
    ///
    /// This function is usually called once every frame,
    /// to clear the previous contents of the target.
    ///
    /// \param color Fill color to use to clear the render target
    ///
    ////////////////////////////////////////////////////////////
    void clear(Color color = Color::Black);

    ////////////////////////////////////////////////////////////
    /// \brief Clear the stencil buffer to a specific value
    ///
    /// The specified value is truncated to the bit width of
    /// the current stencil buffer.
    ///
    /// \param stencilValue Stencil value to clear to
    ///
    ////////////////////////////////////////////////////////////
    void clearStencil(StencilValue stencilValue);

    ////////////////////////////////////////////////////////////
    /// \brief Clear the entire target with a single color and stencil value
    ///
    /// The specified stencil value is truncated to the bit
    /// width of the current stencil buffer.
    ///
    /// \param color        Fill color to use to clear the render target
    /// \param stencilValue Stencil value to clear to
    ///
    ////////////////////////////////////////////////////////////
    void clear(Color color, StencilValue stencilValue);

    ////////////////////////////////////////////////////////////
    /// \brief Change the current active view
    ///
    /// The view is like a 2D camera, it controls which part of
    /// the 2D scene is visible, and how it is viewed in the
    /// render target.
    /// The new view will affect everything that is drawn, until
    /// another view is set.
    /// The render target keeps its own copy of the view object,
    /// so it is not necessary to keep the original one alive
    /// after calling this function.
    /// To restore the original view of the target, you can pass
    /// the result of `getDefaultView()` to this function.
    ///
    /// \param view New view to use
    ///
    /// \see `getView`, `getDefaultView`
    ///
    ////////////////////////////////////////////////////////////
    void setView(const View& view);

    ////////////////////////////////////////////////////////////
    /// \brief Get the view currently in use in the render target
    ///
    /// \return The view object that is currently used
    ///
    /// \see `setView`, `getDefaultView`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] const View& getView() const;

    ////////////////////////////////////////////////////////////
    /// \brief Get the default view of the render target
    ///
    /// The default view has the initial size of the render target,
    /// and never changes after the target has been created.
    ///
    /// \return The default view of the render target
    ///
    /// \see `setView`, `getView`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] const View& getDefaultView() const;

    ////////////////////////////////////////////////////////////
    /// \brief Get the viewport of a view, applied to this render target
    ///
    /// The viewport is defined in the view as a ratio, this function
    /// simply applies this ratio to the current dimensions of the
    /// render target to calculate the pixels rectangle that the viewport
    /// actually covers in the target.
    ///
    /// \param view The view for which we want to compute the viewport
    ///
    /// \return Viewport rectangle, expressed in pixels
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] IntRect getViewport(const View& view) const;

    ////////////////////////////////////////////////////////////
    /// \brief Get the scissor rectangle of a view, applied to this render target
    ///
    /// The scissor rectangle is defined in the view as a ratio. This
    /// function simply applies this ratio to the current dimensions
    /// of the render target to calculate the pixels rectangle
    /// that the scissor rectangle actually covers in the target.
    ///
    /// \param view The view for which we want to compute the scissor rectangle
    ///
    /// \return Scissor rectangle, expressed in pixels
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] IntRect getScissor(const View& view) const;

    ////////////////////////////////////////////////////////////
    /// \brief Convert a point from target coordinates to world
    ///        coordinates, using the current view
    ///
    /// This function is an overload of the mapPixelToCoords
    /// function that implicitly uses the current view.
    /// It is equivalent to:
    /// \code
    /// target.mapPixelToCoords(point, target.getView());
    /// \endcode
    ///
    /// \param point Pixel to convert
    ///
    /// \return The converted point, in "world" coordinates
    ///
    /// \see `mapCoordsToPixel`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] Vector2f mapPixelToCoords(Vector2i point) const;

    ////////////////////////////////////////////////////////////
    /// \brief Convert a point from target coordinates to world coordinates
    ///
    /// This function finds the 2D position that matches the
    /// given pixel of the render target. In other words, it does
    /// the inverse of what the graphics card does, to find the
    /// initial position of a rendered pixel.
    ///
    /// Initially, both coordinate systems (world units and target pixels)
    /// match perfectly. But if you define a custom view or resize your
    /// render target, this assertion is not `true` anymore, i.e. a point
    /// located at (10, 50) in your render target may map to the point
    /// (150, 75) in your 2D world -- if the view is translated by (140, 25).
    ///
    /// For render-windows, this function is typically used to find
    /// which point (or object) is located below the mouse cursor.
    ///
    /// This version uses a custom view for calculations, see the other
    /// overload of the function if you want to use the current view of the
    /// render target.
    ///
    /// \param point Pixel to convert
    /// \param view The view to use for converting the point
    ///
    /// \return The converted point, in "world" units
    ///
    /// \see `mapCoordsToPixel`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] Vector2f mapPixelToCoords(Vector2i point, const View& view) const;

    ////////////////////////////////////////////////////////////
    /// \brief Convert a point from world coordinates to target
    ///        coordinates, using the current view
    ///
    /// This function is an overload of the `mapCoordsToPixel`
    /// function that implicitly uses the current view.
    /// It is equivalent to:
    /// \code
    /// target.mapCoordsToPixel(point, target.getView());
    /// \endcode
    ///
    /// \param point Point to convert
    ///
    /// \return The converted point, in target coordinates (pixels)
    ///
    /// \see `mapPixelToCoords`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] Vector2i mapCoordsToPixel(Vector2f point) const;

    ////////////////////////////////////////////////////////////
    /// \brief Convert a point from world coordinates to target coordinates
    ///
    /// This function finds the pixel of the render target that matches
    /// the given 2D point. In other words, it goes through the same process
    /// as the graphics card, to compute the final position of a rendered point.
    ///
    /// Initially, both coordinate systems (world units and target pixels)
    /// match perfectly. But if you define a custom view or resize your
    /// render target, this assertion is not `true` anymore, i.e. a point
    /// located at (150, 75) in your 2D world may map to the pixel
    /// (10, 50) of your render target -- if the view is translated by (140, 25).
    ///
    /// This version uses a custom view for calculations, see the other
    /// overload of the function if you want to use the current view of the
    /// render target.
    ///
    /// \param point Point to convert
    /// \param view The view to use for converting the point
    ///
    /// \return The converted point, in target coordinates (pixels)
    ///
    /// \see `mapPixelToCoords`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] Vector2i mapCoordsToPixel(Vector2f point, const View& view) const;

    ////////////////////////////////////////////////////////////
    /// \brief Draw a drawable object to the render target
    ///
    /// \param drawable Object to draw
    /// \param states   Render states to use for drawing
    ///
    ////////////////////////////////////////////////////////////
    void draw(const Drawable& drawable, const RenderStates& states = RenderStates::Default);

    ////////////////////////////////////////////////////////////
    /// \brief Draw primitives defined by an array of vertices
    ///
    /// \param vertices    Pointer to the vertices
    /// \param vertexCount Number of vertices in the array
    /// \param type        Type of primitives to draw
    /// \param states      Render states to use for drawing
    ///
    ////////////////////////////////////////////////////////////
    void draw(const Vertex*       vertices,
              std::size_t         vertexCount,
              PrimitiveType       type,
              const RenderStates& states = RenderStates::Default);

    ////////////////////////////////////////////////////////////
    /// \brief Draw primitives defined by a vertex buffer
    ///
    /// \param vertexBuffer Vertex buffer
    /// \param states       Render states to use for drawing
    ///
    ////////////////////////////////////////////////////////////
    void draw(const VertexBuffer& vertexBuffer, const RenderStates& states = RenderStates::Default);

    ////////////////////////////////////////////////////////////
    /// \brief Draw primitives defined by a vertex buffer
    ///
    /// \param vertexBuffer Vertex buffer
    /// \param firstVertex  Index of the first vertex to render
    /// \param vertexCount  Number of vertices to render
    /// \param states       Render states to use for drawing
    ///
    ////////////////////////////////////////////////////////////
    void draw(const VertexBuffer& vertexBuffer,
              std::size_t         firstVertex,
              std::size_t         vertexCount,
              const RenderStates& states = RenderStates::Default);

    ////////////////////////////////////////////////////////////
    /// \brief Return the size of the rendering region of the target
    ///
    /// \return Size in pixels
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] virtual Vector2u getSize() const = 0;

    ////////////////////////////////////////////////////////////
    /// \brief Tell if the render target will use sRGB encoding when drawing on it
    ///
    /// \return `true` if the render target use sRGB encoding, `false` otherwise
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] virtual bool isSrgb() const;

    ////////////////////////////////////////////////////////////
    /// \brief Activate or deactivate the render target for rendering
    ///
    /// This function makes the render target's context current for
    /// future OpenGL rendering operations (so you shouldn't care
    /// about it if you're not doing direct OpenGL stuff).
    /// A render target's context is active only on the current thread,
    /// if you want to make it active on another thread you have
    /// to deactivate it on the previous thread first if it was active.
    /// Only one context can be current in a thread, so if you
    /// want to draw OpenGL geometry to another render target
    /// don't forget to activate it again. Activating a render
    /// target will automatically deactivate the previously active
    /// context (if any).
    ///
    /// \param active `true` to activate, `false` to deactivate
    ///
    /// \return `true` if operation was successful, `false` otherwise
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] virtual bool setActive(bool active = true);

    ////////////////////////////////////////////////////////////
    /// \brief Save the current OpenGL render states and matrices
    ///
    /// This function can be used when you mix SFML drawing
    /// and direct OpenGL rendering. Combined with popGLStates,
    /// it ensures that:
    /// \li SFML's internal states are not messed up by your OpenGL code
    /// \li your OpenGL states are not modified by a call to a SFML function
    ///
    /// More specifically, it must be used around code that
    /// calls `draw` functions. Example:
    /// \code
    /// // OpenGL code here...
    /// window.pushGLStates();
    /// window.draw(...);
    /// window.draw(...);
    /// window.popGLStates();
    /// // OpenGL code here...
    /// \endcode
    ///
    /// Note that this function is quite expensive: it saves all the
    /// possible OpenGL states and matrices, even the ones you
    /// don't care about. Therefore it should be used wisely.
    /// It is provided for convenience, but the best results will
    /// be achieved if you handle OpenGL states yourself (because
    /// you know which states have really changed, and need to be
    /// saved and restored). Take a look at the resetGLStates
    /// function if you do so.
    ///
    /// \see `popGLStates`
    ///
    ////////////////////////////////////////////////////////////
    void pushGLStates();

    ////////////////////////////////////////////////////////////
    /// \brief Restore the previously saved OpenGL render states and matrices
    ///
    /// See the description of `pushGLStates` to get a detailed
    /// description of these functions.
    ///
    /// \see `pushGLStates`
    ///
    ////////////////////////////////////////////////////////////
    void popGLStates();

    ////////////////////////////////////////////////////////////
    /// \brief Reset the internal OpenGL states so that the target is ready for drawing
    ///
    /// This function can be used when you mix SFML drawing
    /// and direct OpenGL rendering, if you choose not to use
    /// `pushGLStates`/`popGLStates`. It makes sure that all OpenGL
    /// states needed by SFML are set, so that subsequent `draw()`
    /// calls will work as expected.
    ///
    /// Example:
    /// \code
    /// // OpenGL code here...
    /// glPushAttrib(...);
    /// window.resetGLStates();
    /// window.draw(...);
    /// window.draw(...);
    /// glPopAttrib(...);
    /// // OpenGL code here...
    /// \endcode
    ///
    ////////////////////////////////////////////////////////////
    void resetGLStates();

protected:
    ////////////////////////////////////////////////////////////
    /// \brief Default constructor
    ///
    ////////////////////////////////////////////////////////////
    RenderTarget() = default;

    ////////////////////////////////////////////////////////////
    /// \brief Performs the common initialization step after creation
    ///
    /// The derived classes must call this function after the
    /// target is created and ready for drawing.
    ///
    ////////////////////////////////////////////////////////////
    void initialize();

private:
    ////////////////////////////////////////////////////////////
    /// \brief Apply the current view
    ///
    ////////////////////////////////////////////////////////////
    void applyCurrentView();

    ////////////////////////////////////////////////////////////
    /// \brief Apply a new blending mode
    ///
    /// \param mode Blending mode to apply
    ///
    ////////////////////////////////////////////////////////////
    void applyBlendMode(const BlendMode& mode);

    ////////////////////////////////////////////////////////////
    /// \brief Apply a new stencil mode
    ///
    /// \param mode Stencil mode to apply
    ///
    ////////////////////////////////////////////////////////////
    void applyStencilMode(const StencilMode& mode);

    ////////////////////////////////////////////////////////////
    /// \brief Apply a new transform
    ///
    /// \param transform Transform to apply
    ///
    ////////////////////////////////////////////////////////////
    void applyTransform(const Transform& transform);

    ////////////////////////////////////////////////////////////
    /// \brief Apply a new texture
    ///
    /// \param texture        Texture to apply
    /// \param coordinateType The texture coordinate type to use
    ///
    ////////////////////////////////////////////////////////////
    void applyTexture(const Texture* texture, CoordinateType coordinateType = CoordinateType::Pixels);

    ////////////////////////////////////////////////////////////
    /// \brief Apply a new shader
    ///
    /// \param shader Shader to apply
    ///
    ////////////////////////////////////////////////////////////
    void applyShader(const Shader* shader);

    ////////////////////////////////////////////////////////////
    /// \brief Setup environment for drawing
    ///
    /// \param useVertexCache Are we going to use the vertex cache?
    /// \param states         Render states to use for drawing
    ///
    ////////////////////////////////////////////////////////////
    void setupDraw(bool useVertexCache, const RenderStates& states);

    ////////////////////////////////////////////////////////////
    /// \brief Draw the primitives
    ///
    /// \param type        Type of primitives to draw
    /// \param firstVertex Index of the first vertex to use when drawing
    /// \param vertexCount Number of vertices to use when drawing
    ///
    ////////////////////////////////////////////////////////////
    void drawPrimitives(PrimitiveType type, std::size_t firstVertex, std::size_t vertexCount);

    ////////////////////////////////////////////////////////////
    /// \brief Clean up environment after drawing
    ///
    /// \param states Render states used for drawing
    ///
    ////////////////////////////////////////////////////////////
    void cleanupDraw(const RenderStates& states);

    ////////////////////////////////////////////////////////////
    /// \brief Render states cache
    ///
    ////////////////////////////////////////////////////////////
    struct StatesCache
    {
        bool                  enable{};                //!< Is the cache enabled?
        bool                  glStatesSet{};           //!< Are our internal GL states set yet?
        bool                  viewChanged{};           //!< Has the current view changed since last draw?
        bool                  scissorEnabled{};        //!< Is scissor testing enabled?
        bool                  stencilEnabled{};        //!< Is stencil testing enabled?
        BlendMode             lastBlendMode;           //!< Cached blending mode
        StencilMode           lastStencilMode;         //!< Cached stencil
        std::uint64_t         lastTextureId{};         //!< Cached texture
        CoordinateType        lastCoordinateType{};    //!< Texture coordinate type
        bool                  texCoordsArrayEnabled{}; //!< Is `GL_TEXTURE_COORD_ARRAY` client state enabled?
        bool                  useVertexCache{};        //!< Did we previously use the vertex cache?
        std::array<Vertex, 4> vertexCache{};           //!< Pre-transformed vertices cache
    };

    ////////////////////////////////////////////////////////////
    // Member data
    ////////////////////////////////////////////////////////////
    View          m_defaultView; //!< Default view
    View          m_view;        //!< Current view
    StatesCache   m_cache{};     //!< Render states cache
    std::uint64_t m_id{};        //!< Unique number that identifies the RenderTarget
};

} // namespace sf


////////////////////////////////////////////////////////////
/// \class sf::RenderTarget
/// \ingroup graphics
///
/// `sf::RenderTarget` defines the common behavior of all the
/// 2D render targets usable in the graphics module. It makes
/// it possible to draw 2D entities like sprites, shapes, text
/// without using any OpenGL command directly.
///
/// A `sf::RenderTarget` is also able to use views (`sf::View`),
/// which are a kind of 2D cameras. With views you can globally
/// scroll, rotate or zoom everything that is drawn,
/// without having to transform every single entity. See the
/// documentation of `sf::View` for more details and sample pieces of
/// code about this class.
///
/// On top of that, render targets are still able to render direct
/// OpenGL stuff. It is even possible to mix together OpenGL calls
/// and regular SFML drawing commands. When doing so, make sure that
/// OpenGL states are not messed up by calling the
/// `pushGLStates`/`popGLStates` functions.
///
/// While render targets are moveable, it is not valid to move them
/// between threads. This will cause your program to crash. The
/// problem boils down to OpenGL being limited with regard to how it
/// works in multithreaded environments. Please ensure you only move
/// render targets within the same thread.
///
/// \see `sf::RenderWindow`, `sf::RenderTexture`, `sf::View`
///
////////////////////////////////////////////////////////////