File: Shader.hpp

package info (click to toggle)
libsfml 3.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 13,704 kB
  • sloc: cpp: 52,754; ansic: 24,944; objc: 668; sh: 172; xml: 25; makefile: 18
file content (1023 lines) | stat: -rw-r--r-- 44,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2025 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
//    you must not claim that you wrote the original software.
//    If you use this software in a product, an acknowledgment
//    in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
//    and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////

#pragma once

////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Export.hpp>

#include <SFML/Graphics/Glsl.hpp>

#include <SFML/Window/GlResource.hpp>

#include <filesystem>
#include <string>
#include <string_view>
#include <unordered_map>

#include <cstddef>


namespace sf
{
class InputStream;
class Texture;

////////////////////////////////////////////////////////////
/// \brief Shader class (vertex, geometry and fragment)
///
////////////////////////////////////////////////////////////
class SFML_GRAPHICS_API Shader : GlResource
{
public:
    ////////////////////////////////////////////////////////////
    /// \brief Types of shaders
    ///
    ////////////////////////////////////////////////////////////
    enum class Type
    {
        Vertex,   //!< %Vertex shader
        Geometry, //!< Geometry shader
        Fragment  //!< Fragment (pixel) shader
    };

    ////////////////////////////////////////////////////////////
    /// \brief Special type that can be passed to setUniform(),
    ///        and that represents the texture of the object being drawn
    ///
    /// \see `setUniform(const std::string&, CurrentTextureType)`
    ///
    ////////////////////////////////////////////////////////////
    struct CurrentTextureType
    {
    };

    ////////////////////////////////////////////////////////////
    /// \brief Represents the texture of the object being drawn
    ///
    /// \see `setUniform(const std::string&, CurrentTextureType)`
    ///
    ////////////////////////////////////////////////////////////
    // NOLINTNEXTLINE(readability-identifier-naming)
    static inline CurrentTextureType CurrentTexture;

    ////////////////////////////////////////////////////////////
    /// \brief Default constructor
    ///
    /// This constructor creates an empty shader.
    ///
    /// Binding an empty shader has the same effect as not
    /// binding any shader.
    ///
    ////////////////////////////////////////////////////////////
    Shader() = default;

    ////////////////////////////////////////////////////////////
    /// \brief Destructor
    ///
    ////////////////////////////////////////////////////////////
    ~Shader();

    ////////////////////////////////////////////////////////////
    /// \brief Deleted copy constructor
    ///
    ////////////////////////////////////////////////////////////
    Shader(const Shader&) = delete;

    ////////////////////////////////////////////////////////////
    /// \brief Deleted copy assignment
    ///
    ////////////////////////////////////////////////////////////
    Shader& operator=(const Shader&) = delete;

    ////////////////////////////////////////////////////////////
    /// \brief Move constructor
    ///
    ////////////////////////////////////////////////////////////
    Shader(Shader&& source) noexcept;

    ////////////////////////////////////////////////////////////
    /// \brief Move assignment
    ///
    ////////////////////////////////////////////////////////////
    Shader& operator=(Shader&& right) noexcept;

    ////////////////////////////////////////////////////////////
    /// \brief Construct from a shader file
    ///
    /// This constructor loads a single shader, vertex, geometry or
    /// fragment, identified by the second argument.
    /// The source must be a text file containing a valid
    /// shader in GLSL language. GLSL is a C-like language
    /// dedicated to OpenGL shaders; you'll probably need to
    /// read a good documentation for it before writing your
    /// own shaders.
    ///
    /// \param filename Path of the vertex, geometry or fragment shader file to load
    /// \param type     Type of shader (vertex, geometry or fragment)
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(const std::filesystem::path& filename, Type type);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from vertex and fragment shader files
    ///
    /// This constructor loads both the vertex and the fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be text files containing valid shaders
    /// in GLSL language. GLSL is a C-like language dedicated to
    /// OpenGL shaders; you'll probably need to read a good documentation
    /// for it before writing your own shaders.
    ///
    /// \param vertexShaderFilename   Path of the vertex shader file to load
    /// \param fragmentShaderFilename Path of the fragment shader file to load
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(const std::filesystem::path& vertexShaderFilename, const std::filesystem::path& fragmentShaderFilename);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from vertex, geometry and fragment shader files
    ///
    /// This constructor loads the vertex, geometry and fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be text files containing valid shaders
    /// in GLSL language. GLSL is a C-like language dedicated to
    /// OpenGL shaders; you'll probably need to read a good documentation
    /// for it before writing your own shaders.
    ///
    /// \param vertexShaderFilename   Path of the vertex shader file to load
    /// \param geometryShaderFilename Path of the geometry shader file to load
    /// \param fragmentShaderFilename Path of the fragment shader file to load
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(const std::filesystem::path& vertexShaderFilename,
           const std::filesystem::path& geometryShaderFilename,
           const std::filesystem::path& fragmentShaderFilename);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from shader in memory
    ///
    /// This constructor loads a single shader, vertex, geometry
    /// or fragment, identified by the second argument.
    /// The source code must be a valid shader in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for
    /// it before writing your own shaders.
    ///
    /// \param shader String containing the source code of the shader
    /// \param type   Type of shader (vertex, geometry or fragment)
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(std::string_view shader, Type type);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from vertex and fragment shaders in memory
    ///
    /// This constructor loads both the vertex and the fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be valid shaders in GLSL language. GLSL is
    /// a C-like language dedicated to OpenGL shaders; you'll
    /// probably need to read a good documentation for it before
    /// writing your own shaders.
    ///
    /// \param vertexShader   String containing the source code of the vertex shader
    /// \param fragmentShader String containing the source code of the fragment shader
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(std::string_view vertexShader, std::string_view fragmentShader);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from vertex, geometry and fragment shaders in memory
    ///
    /// This constructor loads the vertex, geometry and fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be valid shaders in GLSL language. GLSL is
    /// a C-like language dedicated to OpenGL shaders; you'll
    /// probably need to read a good documentation for it before
    /// writing your own shaders.
    ///
    /// \param vertexShader   String containing the source code of the vertex shader
    /// \param geometryShader String containing the source code of the geometry shader
    /// \param fragmentShader String containing the source code of the fragment shader
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(std::string_view vertexShader, std::string_view geometryShader, std::string_view fragmentShader);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from a shader stream
    ///
    /// This constructor loads a single shader, vertex, geometry
    /// or fragment, identified by the second argument.
    /// The source code must be a valid shader in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for it
    /// before writing your own shaders.
    ///
    /// \param stream Source stream to read from
    /// \param type   Type of shader (vertex, geometry or fragment)
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(InputStream& stream, Type type);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from vertex and fragment shader streams
    ///
    /// This constructor loads both the vertex and the fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The source codes must be valid shaders in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for
    /// it before writing your own shaders.
    ///
    /// \param vertexShaderStream   Source stream to read the vertex shader from
    /// \param fragmentShaderStream Source stream to read the fragment shader from
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(InputStream& vertexShaderStream, InputStream& fragmentShaderStream);

    ////////////////////////////////////////////////////////////
    /// \brief Construct from vertex, geometry and fragment shader streams
    ///
    /// This constructor loads the vertex, geometry and fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The source codes must be valid shaders in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for
    /// it before writing your own shaders.
    ///
    /// \param vertexShaderStream   Source stream to read the vertex shader from
    /// \param geometryShaderStream Source stream to read the geometry shader from
    /// \param fragmentShaderStream Source stream to read the fragment shader from
    ///
    /// \throws sf::Exception if loading was unsuccessful
    ///
    /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    Shader(InputStream& vertexShaderStream, InputStream& geometryShaderStream, InputStream& fragmentShaderStream);

    ////////////////////////////////////////////////////////////
    /// \brief Load the vertex, geometry or fragment shader from a file
    ///
    /// This function loads a single shader, vertex, geometry or
    /// fragment, identified by the second argument.
    /// The source must be a text file containing a valid
    /// shader in GLSL language. GLSL is a C-like language
    /// dedicated to OpenGL shaders; you'll probably need to
    /// read a good documentation for it before writing your
    /// own shaders.
    ///
    /// \param filename Path of the vertex, geometry or fragment shader file to load
    /// \param type     Type of shader (vertex, geometry or fragment)
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromFile(const std::filesystem::path& filename, Type type);

    ////////////////////////////////////////////////////////////
    /// \brief Load both the vertex and fragment shaders from files
    ///
    /// This function loads both the vertex and the fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be text files containing valid shaders
    /// in GLSL language. GLSL is a C-like language dedicated to
    /// OpenGL shaders; you'll probably need to read a good documentation
    /// for it before writing your own shaders.
    ///
    /// \param vertexShaderFilename   Path of the vertex shader file to load
    /// \param fragmentShaderFilename Path of the fragment shader file to load
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromFile(const std::filesystem::path& vertexShaderFilename,
                                    const std::filesystem::path& fragmentShaderFilename);

    ////////////////////////////////////////////////////////////
    /// \brief Load the vertex, geometry and fragment shaders from files
    ///
    /// This function loads the vertex, geometry and fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be text files containing valid shaders
    /// in GLSL language. GLSL is a C-like language dedicated to
    /// OpenGL shaders; you'll probably need to read a good documentation
    /// for it before writing your own shaders.
    ///
    /// \param vertexShaderFilename   Path of the vertex shader file to load
    /// \param geometryShaderFilename Path of the geometry shader file to load
    /// \param fragmentShaderFilename Path of the fragment shader file to load
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromMemory`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromFile(const std::filesystem::path& vertexShaderFilename,
                                    const std::filesystem::path& geometryShaderFilename,
                                    const std::filesystem::path& fragmentShaderFilename);

    ////////////////////////////////////////////////////////////
    /// \brief Load the vertex, geometry or fragment shader from a source code in memory
    ///
    /// This function loads a single shader, vertex, geometry
    /// or fragment, identified by the second argument.
    /// The source code must be a valid shader in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for
    /// it before writing your own shaders.
    ///
    /// \param shader String containing the source code of the shader
    /// \param type   Type of shader (vertex, geometry or fragment)
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromFile`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromMemory(std::string_view shader, Type type);

    ////////////////////////////////////////////////////////////
    /// \brief Load both the vertex and fragment shaders from source codes in memory
    ///
    /// This function loads both the vertex and the fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be valid shaders in GLSL language. GLSL is
    /// a C-like language dedicated to OpenGL shaders; you'll
    /// probably need to read a good documentation for it before
    /// writing your own shaders.
    ///
    /// \param vertexShader   String containing the source code of the vertex shader
    /// \param fragmentShader String containing the source code of the fragment shader
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromFile`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromMemory(std::string_view vertexShader, std::string_view fragmentShader);

    ////////////////////////////////////////////////////////////
    /// \brief Load the vertex, geometry and fragment shaders from source codes in memory
    ///
    /// This function loads the vertex, geometry and fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The sources must be valid shaders in GLSL language. GLSL is
    /// a C-like language dedicated to OpenGL shaders; you'll
    /// probably need to read a good documentation for it before
    /// writing your own shaders.
    ///
    /// \param vertexShader   String containing the source code of the vertex shader
    /// \param geometryShader String containing the source code of the geometry shader
    /// \param fragmentShader String containing the source code of the fragment shader
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromFile`, `loadFromStream`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromMemory(std::string_view vertexShader,
                                      std::string_view geometryShader,
                                      std::string_view fragmentShader);

    ////////////////////////////////////////////////////////////
    /// \brief Load the vertex, geometry or fragment shader from a custom stream
    ///
    /// This function loads a single shader, vertex, geometry
    /// or fragment, identified by the second argument.
    /// The source code must be a valid shader in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for it
    /// before writing your own shaders.
    ///
    /// \param stream Source stream to read from
    /// \param type   Type of shader (vertex, geometry or fragment)
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromFile`, `loadFromMemory`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromStream(InputStream& stream, Type type);

    ////////////////////////////////////////////////////////////
    /// \brief Load both the vertex and fragment shaders from custom streams
    ///
    /// This function loads both the vertex and the fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The source codes must be valid shaders in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for
    /// it before writing your own shaders.
    ///
    /// \param vertexShaderStream   Source stream to read the vertex shader from
    /// \param fragmentShaderStream Source stream to read the fragment shader from
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromFile`, `loadFromMemory`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromStream(InputStream& vertexShaderStream, InputStream& fragmentShaderStream);

    ////////////////////////////////////////////////////////////
    /// \brief Load the vertex, geometry and fragment shaders from custom streams
    ///
    /// This function loads the vertex, geometry and fragment
    /// shaders. If one of them fails to load, the shader is left
    /// empty (the valid shader is unloaded).
    /// The source codes must be valid shaders in GLSL language.
    /// GLSL is a C-like language dedicated to OpenGL shaders;
    /// you'll probably need to read a good documentation for
    /// it before writing your own shaders.
    ///
    /// \param vertexShaderStream   Source stream to read the vertex shader from
    /// \param geometryShaderStream Source stream to read the geometry shader from
    /// \param fragmentShaderStream Source stream to read the fragment shader from
    ///
    /// \return `true` if loading succeeded, `false` if it failed
    ///
    /// \see `loadFromFile`, `loadFromMemory`
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool loadFromStream(InputStream& vertexShaderStream,
                                      InputStream& geometryShaderStream,
                                      InputStream& fragmentShaderStream);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p float uniform
    ///
    /// \param name Name of the uniform variable in GLSL
    /// \param x    Value of the float scalar
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, float x);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p vec2 uniform
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the vec2 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, Glsl::Vec2 vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p vec3 uniform
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the vec3 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Vec3& vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p vec4 uniform
    ///
    /// This overload can also be called with `sf::Color` objects
    /// that are converted to `sf::Glsl::Vec4`.
    ///
    /// It is important to note that the components of the color are
    /// normalized before being passed to the shader. Therefore,
    /// they are converted from range [0 .. 255] to range [0 .. 1].
    /// For example, a `sf::Color(255, 127, 0, 255)` will be transformed
    /// to a `vec4(1.0, 0.5, 0.0, 1.0)` in the shader.
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the vec4 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Vec4& vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p int uniform
    ///
    /// \param name Name of the uniform variable in GLSL
    /// \param x    Value of the int scalar
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, int x);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p ivec2 uniform
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the ivec2 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, Glsl::Ivec2 vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p ivec3 uniform
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the ivec3 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Ivec3& vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p ivec4 uniform
    ///
    /// This overload can also be called with `sf::Color` objects
    /// that are converted to `sf::Glsl::Ivec4`.
    ///
    /// If color conversions are used, the ivec4 uniform in GLSL
    /// will hold the same values as the original `sf::Color`
    /// instance. For example, `sf::Color(255, 127, 0, 255)` is
    /// mapped to `ivec4(255, 127, 0, 255)`.
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the ivec4 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Ivec4& vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p bool uniform
    ///
    /// \param name Name of the uniform variable in GLSL
    /// \param x    Value of the bool scalar
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, bool x);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p bvec2 uniform
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the bvec2 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, Glsl::Bvec2 vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p bvec3 uniform
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the bvec3 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Bvec3& vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p bvec4 uniform
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param vector Value of the bvec4 vector
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Bvec4& vector);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p mat3 matrix
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param matrix Value of the mat3 matrix
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Mat3& matrix);

    ////////////////////////////////////////////////////////////
    /// \brief Specify value for \p mat4 matrix
    ///
    /// \param name   Name of the uniform variable in GLSL
    /// \param matrix Value of the mat4 matrix
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Glsl::Mat4& matrix);

    ////////////////////////////////////////////////////////////
    /// \brief Specify a texture as \p sampler2D uniform
    ///
    /// \a name is the name of the variable to change in the shader.
    /// The corresponding parameter in the shader must be a 2D texture
    /// (\p sampler2D GLSL type).
    ///
    /// Example:
    /// \code
    /// uniform sampler2D the_texture; // this is the variable in the shader
    /// \endcode
    /// \code
    /// sf::Texture texture;
    /// ...
    /// shader.setUniform("the_texture", texture);
    /// \endcode
    /// It is important to note that `texture` must remain alive as long
    /// as the shader uses it, no copy is made internally.
    ///
    /// To use the texture of the object being drawn, which cannot be
    /// known in advance, you can pass the special value
    /// `sf::Shader::CurrentTexture`:
    /// \code
    /// shader.setUniform("the_texture", sf::Shader::CurrentTexture).
    /// \endcode
    ///
    /// \param name    Name of the texture in the shader
    /// \param texture Texture to assign
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Texture& texture);

    ////////////////////////////////////////////////////////////
    /// \brief Disallow setting from a temporary texture
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, const Texture&& texture) = delete;

    ////////////////////////////////////////////////////////////
    /// \brief Specify current texture as \p sampler2D uniform
    ///
    /// This overload maps a shader texture variable to the
    /// texture of the object being drawn, which cannot be
    /// known in advance. The second argument must be
    /// `sf::Shader::CurrentTexture`.
    /// The corresponding parameter in the shader must be a 2D texture
    /// (\p sampler2D GLSL type).
    ///
    /// Example:
    /// \code
    /// uniform sampler2D current; // this is the variable in the shader
    /// \endcode
    /// \code
    /// shader.setUniform("current", sf::Shader::CurrentTexture);
    /// \endcode
    ///
    /// \param name Name of the texture in the shader
    ///
    ////////////////////////////////////////////////////////////
    void setUniform(const std::string& name, CurrentTextureType);

    ////////////////////////////////////////////////////////////
    /// \brief Specify values for \p float[] array uniform
    ///
    /// \param name        Name of the uniform variable in GLSL
    /// \param scalarArray pointer to array of \p float values
    /// \param length      Number of elements in the array
    ///
    ////////////////////////////////////////////////////////////
    void setUniformArray(const std::string& name, const float* scalarArray, std::size_t length);

    ////////////////////////////////////////////////////////////
    /// \brief Specify values for \p vec2[] array uniform
    ///
    /// \param name        Name of the uniform variable in GLSL
    /// \param vectorArray pointer to array of \p vec2 values
    /// \param length      Number of elements in the array
    ///
    ////////////////////////////////////////////////////////////
    void setUniformArray(const std::string& name, const Glsl::Vec2* vectorArray, std::size_t length);

    ////////////////////////////////////////////////////////////
    /// \brief Specify values for \p vec3[] array uniform
    ///
    /// \param name        Name of the uniform variable in GLSL
    /// \param vectorArray pointer to array of \p vec3 values
    /// \param length      Number of elements in the array
    ///
    ////////////////////////////////////////////////////////////
    void setUniformArray(const std::string& name, const Glsl::Vec3* vectorArray, std::size_t length);

    ////////////////////////////////////////////////////////////
    /// \brief Specify values for \p vec4[] array uniform
    ///
    /// \param name        Name of the uniform variable in GLSL
    /// \param vectorArray pointer to array of \p vec4 values
    /// \param length      Number of elements in the array
    ///
    ////////////////////////////////////////////////////////////
    void setUniformArray(const std::string& name, const Glsl::Vec4* vectorArray, std::size_t length);

    ////////////////////////////////////////////////////////////
    /// \brief Specify values for \p mat3[] array uniform
    ///
    /// \param name        Name of the uniform variable in GLSL
    /// \param matrixArray pointer to array of \p mat3 values
    /// \param length      Number of elements in the array
    ///
    ////////////////////////////////////////////////////////////
    void setUniformArray(const std::string& name, const Glsl::Mat3* matrixArray, std::size_t length);

    ////////////////////////////////////////////////////////////
    /// \brief Specify values for \p mat4[] array uniform
    ///
    /// \param name        Name of the uniform variable in GLSL
    /// \param matrixArray pointer to array of \p mat4 values
    /// \param length      Number of elements in the array
    ///
    ////////////////////////////////////////////////////////////
    void setUniformArray(const std::string& name, const Glsl::Mat4* matrixArray, std::size_t length);

    ////////////////////////////////////////////////////////////
    /// \brief Get the underlying OpenGL handle of the shader.
    ///
    /// You shouldn't need to use this function, unless you have
    /// very specific stuff to implement that SFML doesn't support,
    /// or implement a temporary workaround until a bug is fixed.
    ///
    /// \return OpenGL handle of the shader or 0 if not yet loaded
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] unsigned int getNativeHandle() const;

    ////////////////////////////////////////////////////////////
    /// \brief Bind a shader for rendering
    ///
    /// This function is not part of the graphics API, it mustn't be
    /// used when drawing SFML entities. It must be used only if you
    /// mix `sf::Shader` with OpenGL code.
    ///
    /// \code
    /// sf::Shader s1, s2;
    /// ...
    /// sf::Shader::bind(&s1);
    /// // draw OpenGL stuff that use s1...
    /// sf::Shader::bind(&s2);
    /// // draw OpenGL stuff that use s2...
    /// sf::Shader::bind(nullptr);
    /// // draw OpenGL stuff that use no shader...
    /// \endcode
    ///
    /// \param shader Shader to bind, can be null to use no shader
    ///
    ////////////////////////////////////////////////////////////
    static void bind(const Shader* shader);

    ////////////////////////////////////////////////////////////
    /// \brief Tell whether or not the system supports shaders
    ///
    /// This function should always be called before using
    /// the shader features. If it returns `false`, then
    /// any attempt to use `sf::Shader` will fail.
    ///
    /// \return `true` if shaders are supported, `false` otherwise
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] static bool isAvailable();

    ////////////////////////////////////////////////////////////
    /// \brief Tell whether or not the system supports geometry shaders
    ///
    /// This function should always be called before using
    /// the geometry shader features. If it returns `false`, then
    /// any attempt to use `sf::Shader` geometry shader features will fail.
    ///
    /// This function can only return `true` if isAvailable() would also
    /// return `true`, since shaders in general have to be supported in
    /// order for geometry shaders to be supported as well.
    ///
    /// Note: The first call to this function, whether by your
    /// code or SFML will result in a context switch.
    ///
    /// \return `true` if geometry shaders are supported, `false` otherwise
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] static bool isGeometryAvailable();

private:
    ////////////////////////////////////////////////////////////
    /// \brief Compile the shader(s) and create the program
    ///
    /// If one of the arguments is a null pointer, the corresponding shader
    /// is not created.
    ///
    /// \param vertexShaderCode   Source code of the vertex shader
    /// \param geometryShaderCode Source code of the geometry shader
    /// \param fragmentShaderCode Source code of the fragment shader
    ///
    /// \return `true` on success, `false` if any error happened
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] bool compile(std::string_view vertexShaderCode,
                               std::string_view geometryShaderCode,
                               std::string_view fragmentShaderCode);

    ////////////////////////////////////////////////////////////
    /// \brief Bind all the textures used by the shader
    ///
    /// This function each texture to a different unit, and
    /// updates the corresponding variables in the shader accordingly.
    ///
    ////////////////////////////////////////////////////////////
    void bindTextures() const;

    ////////////////////////////////////////////////////////////
    /// \brief Get the location ID of a shader uniform
    ///
    /// \param name Name of the uniform variable to search
    ///
    /// \return Location ID of the uniform, or -1 if not found
    ///
    ////////////////////////////////////////////////////////////
    int getUniformLocation(const std::string& name);

    ////////////////////////////////////////////////////////////
    /// \brief RAII object to save and restore the program
    ///        binding while uniforms are being set
    ///
    /// Implementation is private in the .cpp file.
    ///
    ////////////////////////////////////////////////////////////
    struct UniformBinder;

    ////////////////////////////////////////////////////////////
    // Types
    ////////////////////////////////////////////////////////////
    using TextureTable = std::unordered_map<int, const Texture*>;
    using UniformTable = std::unordered_map<std::string, int>;

    ////////////////////////////////////////////////////////////
    // Member data
    ////////////////////////////////////////////////////////////
    unsigned int m_shaderProgram{};    //!< OpenGL identifier for the program
    int          m_currentTexture{-1}; //!< Location of the current texture in the shader
    TextureTable m_textures;           //!< Texture variables in the shader, mapped to their location
    UniformTable m_uniforms;           //!< Parameters location cache
};

} // namespace sf


////////////////////////////////////////////////////////////
/// \class sf::Shader
/// \ingroup graphics
///
/// Shaders are programs written using a specific language,
/// executed directly by the graphics card and allowing
/// to apply real-time operations to the rendered entities.
///
/// There are three kinds of shaders:
/// \li %Vertex shaders, that process vertices
/// \li Geometry shaders, that process primitives
/// \li Fragment (pixel) shaders, that process pixels
///
/// A `sf::Shader` can be composed of either a vertex shader
/// alone, a geometry shader alone, a fragment shader alone,
/// or any combination of them. (see the variants of the
/// load functions).
///
/// Shaders are written in GLSL, which is a C-like
/// language dedicated to OpenGL shaders. You'll probably
/// need to learn its basics before writing your own shaders
/// for SFML.
///
/// Like any C/C++ program, a GLSL shader has its own variables
/// called _uniforms_ that you can set from your C++ application.
/// `sf::Shader` handles different types of uniforms:
/// \li scalars: \p float, \p int, \p bool
/// \li vectors (2, 3 or 4 components)
/// \li matrices (3x3 or 4x4)
/// \li samplers (textures)
///
/// Some SFML-specific types can be converted:
/// \li `sf::Color` as a 4D vector (\p vec4)
/// \li `sf::Transform` as matrices (\p mat3 or \p mat4)
///
/// Every uniform variable in a shader can be set through one of the
/// `setUniform()` or `setUniformArray()` overloads. For example, if you
/// have a shader with the following uniforms:
/// \code
/// uniform float offset;
/// uniform vec3 point;
/// uniform vec4 color;
/// uniform mat4 matrix;
/// uniform sampler2D overlay;
/// uniform sampler2D current;
/// \endcode
/// You can set their values from C++ code as follows, using the types
/// defined in the `sf::Glsl` namespace:
/// \code
/// shader.setUniform("offset", 2.f);
/// shader.setUniform("point", sf::Vector3f(0.5f, 0.8f, 0.3f));
/// shader.setUniform("color", sf::Glsl::Vec4(color));          // color is a sf::Color
/// shader.setUniform("matrix", sf::Glsl::Mat4(transform));     // transform is a sf::Transform
/// shader.setUniform("overlay", texture);                      // texture is a sf::Texture
/// shader.setUniform("current", sf::Shader::CurrentTexture);
/// \endcode
///
/// The special `Shader::CurrentTexture` argument maps the
/// given \p sampler2D uniform to the current texture of the
/// object being drawn (which cannot be known in advance).
///
/// To apply a shader to a drawable, you must pass it as an
/// additional parameter to the `RenderWindow::draw` function:
/// \code
/// window.draw(sprite, &shader);
/// \endcode
///
/// ... which is in fact just a shortcut for this:
/// \code
/// sf::RenderStates states;
/// states.shader = &shader;
/// window.draw(sprite, states);
/// \endcode
///
/// In the code above we pass a pointer to the shader, because it may
/// be null (which means "no shader").
///
/// Shaders can be used on any drawable, but some combinations are
/// not interesting. For example, using a vertex shader on a `sf::Sprite`
/// is limited because there are only 4 vertices, the sprite would
/// have to be subdivided in order to apply wave effects.
/// Another bad example is a fragment shader with `sf::Text`: the texture
/// of the text is not the actual text that you see on screen, it is
/// a big texture containing all the characters of the font in an
/// arbitrary order; thus, texture lookups on pixels other than the
/// current one may not give you the expected result.
///
/// Shaders can also be used to apply global post-effects to the
/// current contents of the target.
/// This can be done in two different ways:
/// \li draw everything to a `sf::RenderTexture`, then draw it to
///     the main target using the shader
/// \li draw everything directly to the main target, then use
///     `sf::Texture::update(Window&)` to copy its contents to a texture
///     and draw it to the main target using the shader
///
/// The first technique is more optimized because it doesn't involve
/// retrieving the target's pixels to system memory, but the
/// second one doesn't impact the rendering process and can be
/// easily inserted anywhere without impacting all the code.
///
/// Like `sf::Texture` that can be used as a raw OpenGL texture,
/// `sf::Shader` can also be used directly as a raw shader for
/// custom OpenGL geometry.
/// \code
/// sf::Shader::bind(&shader);
/// ... render OpenGL geometry ...
/// sf::Shader::bind(nullptr);
/// \endcode
///
/// \see `sf::Glsl`
///
////////////////////////////////////////////////////////////