1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2025 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#pragma once
#include <SFML/System/Export.hpp>
#include <SFML/System/Angle.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
/// \brief Class template for manipulating
/// 2-dimensional vectors
///
////////////////////////////////////////////////////////////
template <typename T>
class Vector2
{
public:
////////////////////////////////////////////////////////////
/// \brief Default constructor
///
/// Creates a `Vector2(0, 0)`.
///
////////////////////////////////////////////////////////////
constexpr Vector2() = default;
////////////////////////////////////////////////////////////
/// \brief Construct the vector from cartesian coordinates
///
/// \param x X coordinate
/// \param y Y coordinate
///
////////////////////////////////////////////////////////////
constexpr Vector2(T x, T y);
////////////////////////////////////////////////////////////
/// \brief Converts the vector to another type of vector
///
////////////////////////////////////////////////////////////
template <typename U>
constexpr explicit operator Vector2<U>() const;
////////////////////////////////////////////////////////////
/// \brief Construct the vector from polar coordinates <i><b>(floating-point)</b></i>
///
/// \param r Length of vector (can be negative)
/// \param phi Angle from X axis
///
/// Note that this constructor is lossy: calling `length()` and `angle()`
/// may return values different to those provided in this constructor.
///
/// In particular, these transforms can be applied:
/// * `Vector2(r, phi) == Vector2(-r, phi + 180_deg)`
/// * `Vector2(r, phi) == Vector2(r, phi + n * 360_deg)`
///
////////////////////////////////////////////////////////////
SFML_SYSTEM_API Vector2(T r, Angle phi);
////////////////////////////////////////////////////////////
/// \brief Length of the vector <i><b>(floating-point)</b></i>.
///
/// If you are not interested in the actual length, but only in comparisons, consider using `lengthSquared()`.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API T length() const;
////////////////////////////////////////////////////////////
/// \brief Square of vector's length.
///
/// Suitable for comparisons, more efficient than `length()`.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr T lengthSquared() const;
////////////////////////////////////////////////////////////
/// \brief Vector with same direction but length 1 <i><b>(floating-point)</b></i>.
///
/// \pre `*this` is no zero vector.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API Vector2 normalized() const;
////////////////////////////////////////////////////////////
/// \brief Signed angle from `*this` to `rhs` <i><b>(floating-point)</b></i>.
///
/// \return The smallest angle which rotates `*this` in positive
/// or negative direction, until it has the same direction as `rhs`.
/// The result has a sign and lies in the range [-180, 180) degrees.
/// \pre Neither `*this` nor `rhs` is a zero vector.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API Angle angleTo(Vector2 rhs) const;
////////////////////////////////////////////////////////////
/// \brief Signed angle from +X or (1,0) vector <i><b>(floating-point)</b></i>.
///
/// For example, the vector (1,0) corresponds to 0 degrees, (0,1) corresponds to 90 degrees.
///
/// \return Angle in the range [-180, 180) degrees.
/// \pre This vector is no zero vector.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API Angle angle() const;
////////////////////////////////////////////////////////////
/// \brief Rotate by angle \c phi <i><b>(floating-point)</b></i>.
///
/// Returns a vector with same length but different direction.
///
/// In SFML's default coordinate system with +X right and +Y down,
/// this amounts to a clockwise rotation by `phi`.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API Vector2 rotatedBy(Angle phi) const;
////////////////////////////////////////////////////////////
/// \brief Projection of this vector onto `axis` <i><b>(floating-point)</b></i>.
///
/// \param axis Vector being projected onto. Need not be normalized.
/// \pre `axis` must not have length zero.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API Vector2 projectedOnto(Vector2 axis) const;
////////////////////////////////////////////////////////////
/// \brief Returns a perpendicular vector.
///
/// Returns `*this` rotated by +90 degrees; (x,y) becomes (-y,x).
/// For example, the vector (1,0) is transformed to (0,1).
///
/// In SFML's default coordinate system with +X right and +Y down,
/// this amounts to a clockwise rotation.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector2 perpendicular() const;
////////////////////////////////////////////////////////////
/// \brief Dot product of two 2D vectors.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr T dot(Vector2 rhs) const;
////////////////////////////////////////////////////////////
/// \brief Z component of the cross product of two 2D vectors.
///
/// Treats the operands as 3D vectors, computes their cross product
/// and returns the result's Z component (X and Y components are always zero).
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr T cross(Vector2 rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise multiplication of `*this` and `rhs`.
///
/// Computes `(lhs.x*rhs.x, lhs.y*rhs.y)`.
///
/// Scaling is the most common use case for component-wise multiplication/division.
/// This operation is also known as the Hadamard or Schur product.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector2 componentWiseMul(Vector2 rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise division of `*this` and `rhs`.
///
/// Computes `(lhs.x/rhs.x, lhs.y/rhs.y)`.
///
/// Scaling is the most common use case for component-wise multiplication/division.
///
/// \pre Neither component of `rhs` is zero.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector2 componentWiseDiv(Vector2 rhs) const;
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
T x{}; //!< X coordinate of the vector
T y{}; //!< Y coordinate of the vector
};
// Define the most common types
using Vector2i = Vector2<int>;
using Vector2u = Vector2<unsigned int>;
using Vector2f = Vector2<float>;
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of unary `operator-`
///
/// \param right Vector to negate
///
/// \return Member-wise opposite of the vector
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator-(Vector2<T> right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator+=`
///
/// This operator performs a member-wise addition of both vectors,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator+=(Vector2<T>& left, Vector2<T> right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator-=`
///
/// This operator performs a member-wise subtraction of both vectors,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \c left
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator-=(Vector2<T>& left, Vector2<T> right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator+`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise addition of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator+(Vector2<T> left, Vector2<T> right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator-`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise subtraction of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator-(Vector2<T> left, Vector2<T> right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator*`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise multiplication by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator*(Vector2<T> left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator*`
///
/// \param left Left operand (a scalar value)
/// \param right Right operand (a vector)
///
/// \return Member-wise multiplication by `left`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator*(T left, Vector2<T> right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator*=`
///
/// This operator performs a member-wise multiplication by `right`,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator*=(Vector2<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator/`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise division by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator/(Vector2<T> left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator/=`
///
/// This operator performs a member-wise division by `right`,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator/=(Vector2<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator==`
///
/// This operator compares strict equality between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator==(Vector2<T> left, Vector2<T> right);
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator!=`
///
/// This operator compares strict difference between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is not equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator!=(Vector2<T> left, Vector2<T> right);
} // namespace sf
#include <SFML/System/Vector2.inl>
////////////////////////////////////////////////////////////
/// \class sf::Vector2
/// \ingroup system
///
/// `sf::Vector2` is a simple class that defines a mathematical
/// vector with two coordinates (x and y). It can be used to
/// represent anything that has two dimensions: a size, a point,
/// a velocity, a scale, etc.
///
/// The API provides basic arithmetic (addition, subtraction, scale), as
/// well as more advanced geometric operations, such as dot/cross products,
/// length and angle computations, projections, rotations, etc.
///
/// The template parameter T is the type of the coordinates. It
/// can be any type that supports arithmetic operations (+, -, /, *)
/// and comparisons (==, !=), for example int or float.
/// Note that some operations are only meaningful for vectors where T is
/// a floating point type (e.g. float or double), often because
/// results cannot be represented accurately with integers.
/// The method documentation mentions "(floating-point)" in those cases.
///
/// You generally don't have to care about the templated form (`sf::Vector2<T>`),
/// the most common specializations have special type aliases:
/// \li `sf::Vector2<float>` is `sf::Vector2f`
/// \li `sf::Vector2<int>` is `sf::Vector2i`
/// \li `sf::Vector2<unsigned int>` is `sf::Vector2u`
///
/// The `sf::Vector2` class has a simple interface, its x and y members
/// can be accessed directly (there are no accessors like setX(), getX()).
///
/// Usage example:
/// \code
/// sf::Vector2f v(16.5f, 24.f);
/// v.x = 18.2f;
/// float y = v.y;
///
/// sf::Vector2f w = v * 5.f;
/// sf::Vector2f u;
/// u = v + w;
///
/// float s = v.dot(w);
///
/// bool different = (v != u);
/// \endcode
///
/// Note: for 3-dimensional vectors, see `sf::Vector3`.
///
////////////////////////////////////////////////////////////
|