File: Vector2.hpp

package info (click to toggle)
libsfml 3.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 13,704 kB
  • sloc: cpp: 52,754; ansic: 24,944; objc: 668; sh: 172; xml: 25; makefile: 18
file content (435 lines) | stat: -rw-r--r-- 15,995 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2025 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
//    you must not claim that you wrote the original software.
//    If you use this software in a product, an acknowledgment
//    in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
//    and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////

#pragma once

#include <SFML/System/Export.hpp>

#include <SFML/System/Angle.hpp>


namespace sf
{
////////////////////////////////////////////////////////////
/// \brief Class template for manipulating
///        2-dimensional vectors
///
////////////////////////////////////////////////////////////
template <typename T>
class Vector2
{
public:
    ////////////////////////////////////////////////////////////
    /// \brief Default constructor
    ///
    /// Creates a `Vector2(0, 0)`.
    ///
    ////////////////////////////////////////////////////////////
    constexpr Vector2() = default;

    ////////////////////////////////////////////////////////////
    /// \brief Construct the vector from cartesian coordinates
    ///
    /// \param x X coordinate
    /// \param y Y coordinate
    ///
    ////////////////////////////////////////////////////////////
    constexpr Vector2(T x, T y);

    ////////////////////////////////////////////////////////////
    /// \brief Converts the vector to another type of vector
    ///
    ////////////////////////////////////////////////////////////
    template <typename U>
    constexpr explicit operator Vector2<U>() const;

    ////////////////////////////////////////////////////////////
    /// \brief Construct the vector from polar coordinates <i><b>(floating-point)</b></i>
    ///
    /// \param r   Length of vector (can be negative)
    /// \param phi Angle from X axis
    ///
    /// Note that this constructor is lossy: calling `length()` and `angle()`
    /// may return values different to those provided in this constructor.
    ///
    /// In particular, these transforms can be applied:
    /// * `Vector2(r, phi) == Vector2(-r, phi + 180_deg)`
    /// * `Vector2(r, phi) == Vector2(r, phi + n * 360_deg)`
    ///
    ////////////////////////////////////////////////////////////
    SFML_SYSTEM_API Vector2(T r, Angle phi);

    ////////////////////////////////////////////////////////////
    /// \brief Length of the vector <i><b>(floating-point)</b></i>.
    ///
    /// If you are not interested in the actual length, but only in comparisons, consider using `lengthSquared()`.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] SFML_SYSTEM_API T length() const;

    ////////////////////////////////////////////////////////////
    /// \brief Square of vector's length.
    ///
    /// Suitable for comparisons, more efficient than `length()`.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] constexpr T lengthSquared() const;

    ////////////////////////////////////////////////////////////
    /// \brief Vector with same direction but length 1 <i><b>(floating-point)</b></i>.
    ///
    /// \pre `*this` is no zero vector.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] SFML_SYSTEM_API Vector2 normalized() const;

    ////////////////////////////////////////////////////////////
    /// \brief Signed angle from `*this` to `rhs` <i><b>(floating-point)</b></i>.
    ///
    /// \return The smallest angle which rotates `*this` in positive
    /// or negative direction, until it has the same direction as `rhs`.
    /// The result has a sign and lies in the range [-180, 180) degrees.
    /// \pre Neither `*this` nor `rhs` is a zero vector.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] SFML_SYSTEM_API Angle angleTo(Vector2 rhs) const;

    ////////////////////////////////////////////////////////////
    /// \brief Signed angle from +X or (1,0) vector <i><b>(floating-point)</b></i>.
    ///
    /// For example, the vector (1,0) corresponds to 0 degrees, (0,1) corresponds to 90 degrees.
    ///
    /// \return Angle in the range [-180, 180) degrees.
    /// \pre This vector is no zero vector.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] SFML_SYSTEM_API Angle angle() const;

    ////////////////////////////////////////////////////////////
    /// \brief Rotate by angle \c phi <i><b>(floating-point)</b></i>.
    ///
    /// Returns a vector with same length but different direction.
    ///
    /// In SFML's default coordinate system with +X right and +Y down,
    /// this amounts to a clockwise rotation by `phi`.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] SFML_SYSTEM_API Vector2 rotatedBy(Angle phi) const;

    ////////////////////////////////////////////////////////////
    /// \brief Projection of this vector onto `axis` <i><b>(floating-point)</b></i>.
    ///
    /// \param axis Vector being projected onto. Need not be normalized.
    /// \pre `axis` must not have length zero.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] SFML_SYSTEM_API Vector2 projectedOnto(Vector2 axis) const;

    ////////////////////////////////////////////////////////////
    /// \brief Returns a perpendicular vector.
    ///
    /// Returns `*this` rotated by +90 degrees; (x,y) becomes (-y,x).
    /// For example, the vector (1,0) is transformed to (0,1).
    ///
    /// In SFML's default coordinate system with +X right and +Y down,
    /// this amounts to a clockwise rotation.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] constexpr Vector2 perpendicular() const;

    ////////////////////////////////////////////////////////////
    /// \brief Dot product of two 2D vectors.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] constexpr T dot(Vector2 rhs) const;

    ////////////////////////////////////////////////////////////
    /// \brief Z component of the cross product of two 2D vectors.
    ///
    /// Treats the operands as 3D vectors, computes their cross product
    /// and returns the result's Z component (X and Y components are always zero).
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] constexpr T cross(Vector2 rhs) const;

    ////////////////////////////////////////////////////////////
    /// \brief Component-wise multiplication of `*this` and `rhs`.
    ///
    /// Computes `(lhs.x*rhs.x, lhs.y*rhs.y)`.
    ///
    /// Scaling is the most common use case for component-wise multiplication/division.
    /// This operation is also known as the Hadamard or Schur product.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] constexpr Vector2 componentWiseMul(Vector2 rhs) const;

    ////////////////////////////////////////////////////////////
    /// \brief Component-wise division of `*this` and `rhs`.
    ///
    /// Computes `(lhs.x/rhs.x, lhs.y/rhs.y)`.
    ///
    /// Scaling is the most common use case for component-wise multiplication/division.
    ///
    /// \pre Neither component of `rhs` is zero.
    ///
    ////////////////////////////////////////////////////////////
    [[nodiscard]] constexpr Vector2 componentWiseDiv(Vector2 rhs) const;


    ////////////////////////////////////////////////////////////
    // Member data
    ////////////////////////////////////////////////////////////
    T x{}; //!< X coordinate of the vector
    T y{}; //!< Y coordinate of the vector
};

// Define the most common types
using Vector2i = Vector2<int>;
using Vector2u = Vector2<unsigned int>;
using Vector2f = Vector2<float>;

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of unary `operator-`
///
/// \param right Vector to negate
///
/// \return Member-wise opposite of the vector
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator-(Vector2<T> right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator+=`
///
/// This operator performs a member-wise addition of both vectors,
/// and assigns the result to `left`.
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator+=(Vector2<T>& left, Vector2<T> right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator-=`
///
/// This operator performs a member-wise subtraction of both vectors,
/// and assigns the result to `left`.
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \c left
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator-=(Vector2<T>& left, Vector2<T> right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator+`
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise addition of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator+(Vector2<T> left, Vector2<T> right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator-`
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise subtraction of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator-(Vector2<T> left, Vector2<T> right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator*`
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise multiplication by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator*(Vector2<T> left, T right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator*`
///
/// \param left  Left operand (a scalar value)
/// \param right Right operand (a vector)
///
/// \return Member-wise multiplication by `left`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator*(T left, Vector2<T> right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator*=`
///
/// This operator performs a member-wise multiplication by `right`,
/// and assigns the result to `left`.
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator*=(Vector2<T>& left, T right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator/`
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise division by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector2<T> operator/(Vector2<T> left, T right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator/=`
///
/// This operator performs a member-wise division by `right`,
/// and assigns the result to `left`.
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T>& operator/=(Vector2<T>& left, T right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator==`
///
/// This operator compares strict equality between two vectors.
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator==(Vector2<T> left, Vector2<T> right);

////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of binary `operator!=`
///
/// This operator compares strict difference between two vectors.
///
/// \param left  Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is not equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator!=(Vector2<T> left, Vector2<T> right);

} // namespace sf

#include <SFML/System/Vector2.inl>


////////////////////////////////////////////////////////////
/// \class sf::Vector2
/// \ingroup system
///
/// `sf::Vector2` is a simple class that defines a mathematical
/// vector with two coordinates (x and y). It can be used to
/// represent anything that has two dimensions: a size, a point,
/// a velocity, a scale, etc.
///
/// The API provides basic arithmetic (addition, subtraction, scale), as
/// well as more advanced geometric operations, such as dot/cross products,
/// length and angle computations, projections, rotations, etc.
///
/// The template parameter T is the type of the coordinates. It
/// can be any type that supports arithmetic operations (+, -, /, *)
/// and comparisons (==, !=), for example int or float.
/// Note that some operations are only meaningful for vectors where T is
/// a floating point type (e.g. float or double), often because
/// results cannot be represented accurately with integers.
/// The method documentation mentions "(floating-point)" in those cases.
///
/// You generally don't have to care about the templated form (`sf::Vector2<T>`),
/// the most common specializations have special type aliases:
/// \li `sf::Vector2<float>` is `sf::Vector2f`
/// \li `sf::Vector2<int>` is `sf::Vector2i`
/// \li `sf::Vector2<unsigned int>` is `sf::Vector2u`
///
/// The `sf::Vector2` class has a simple interface, its x and y members
/// can be accessed directly (there are no accessors like setX(), getX()).
///
/// Usage example:
/// \code
/// sf::Vector2f v(16.5f, 24.f);
/// v.x = 18.2f;
/// float y = v.y;
///
/// sf::Vector2f w = v * 5.f;
/// sf::Vector2f u;
/// u = v + w;
///
/// float s = v.dot(w);
///
/// bool different = (v != u);
/// \endcode
///
/// Note: for 3-dimensional vectors, see `sf::Vector3`.
///
////////////////////////////////////////////////////////////