1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2025 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#pragma once
#include <SFML/System/Export.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
/// \brief Utility template class for manipulating
/// 3-dimensional vectors
///
////////////////////////////////////////////////////////////
template <typename T>
class Vector3
{
public:
////////////////////////////////////////////////////////////
/// \brief Default constructor
///
/// Creates a `Vector3(0, 0, 0)`.
///
////////////////////////////////////////////////////////////
constexpr Vector3() = default;
////////////////////////////////////////////////////////////
/// \brief Construct the vector from its coordinates
///
/// \param x X coordinate
/// \param y Y coordinate
/// \param z Z coordinate
///
////////////////////////////////////////////////////////////
constexpr Vector3(T x, T y, T z);
////////////////////////////////////////////////////////////
/// \brief Converts the vector to another type of vector
///
////////////////////////////////////////////////////////////
template <typename U>
constexpr explicit operator Vector3<U>() const;
////////////////////////////////////////////////////////////
/// \brief Length of the vector <i><b>(floating-point)</b></i>.
///
/// If you are not interested in the actual length, but only in comparisons, consider using `lengthSquared()`.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API T length() const;
////////////////////////////////////////////////////////////
/// \brief Square of vector's length.
///
/// Suitable for comparisons, more efficient than `length()`.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr T lengthSquared() const;
////////////////////////////////////////////////////////////
/// \brief Vector with same direction but length 1 <i><b>(floating-point)</b></i>.
///
/// \pre `*this` is no zero vector.
///
////////////////////////////////////////////////////////////
[[nodiscard]] SFML_SYSTEM_API Vector3 normalized() const;
////////////////////////////////////////////////////////////
/// \brief Dot product of two 3D vectors.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr T dot(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Cross product of two 3D vectors.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector3 cross(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise multiplication of `*this` and `rhs`.
///
/// Computes `(lhs.x*rhs.x, lhs.y*rhs.y, lhs.z*rhs.z)`.
///
/// Scaling is the most common use case for component-wise multiplication/division.
/// This operation is also known as the Hadamard or Schur product.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector3 componentWiseMul(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise division of `*this` and `rhs`.
///
/// Computes `(lhs.x/rhs.x, lhs.y/rhs.y, lhs.z/rhs.z)`.
///
/// Scaling is the most common use case for component-wise multiplication/division.
///
/// \pre Neither component of `rhs` is zero.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector3 componentWiseDiv(const Vector3& rhs) const;
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
T x{}; //!< X coordinate of the vector
T y{}; //!< Y coordinate of the vector
T z{}; //!< Z coordinate of the vector
};
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of unary `operator-`
///
/// \param left Vector to negate
///
/// \return Member-wise opposite of the vector
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator-(const Vector3<T>& left);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator+=`
///
/// This operator performs a member-wise addition of both vectors,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator+=(Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator-=`
///
/// This operator performs a member-wise subtraction of both vectors,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator-=(Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator+`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise addition of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator+(const Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator-`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Member-wise subtraction of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator-(const Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator*`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise multiplication by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator*(const Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator*`
///
/// \param left Left operand (a scalar value)
/// \param right Right operand (a vector)
///
/// \return Member-wise multiplication by `left`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator*(T left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator*=`
///
/// This operator performs a member-wise multiplication by `right`,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator*=(Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator/`
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Member-wise division by `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr Vector3<T> operator/(const Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator/=`
///
/// This operator performs a member-wise division by `right`,
/// and assigns the result to `left`.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to `left`
///
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector3<T>& operator/=(Vector3<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator==`
///
/// This operator compares strict equality between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator==(const Vector3<T>& left, const Vector3<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector3
/// \brief Overload of binary `operator!=`
///
/// This operator compares strict difference between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return `true` if `left` is not equal to `right`
///
////////////////////////////////////////////////////////////
template <typename T>
[[nodiscard]] constexpr bool operator!=(const Vector3<T>& left, const Vector3<T>& right);
// Aliases for the most common types
using Vector3i = Vector3<int>;
using Vector3f = Vector3<float>;
} // namespace sf
#include <SFML/System/Vector3.inl>
////////////////////////////////////////////////////////////
/// \class sf::Vector3
/// \ingroup system
///
/// `sf::Vector3` is a simple class that defines a mathematical
/// vector with three coordinates (x, y and z). It can be used to
/// represent anything that has three dimensions: a size, a point,
/// a velocity, etc.
///
/// The template parameter T is the type of the coordinates. It
/// can be any type that supports arithmetic operations (+, -, /, *)
/// and comparisons (==, !=), for example int or float.
/// Note that some operations are only meaningful for vectors where T is
/// a floating point type (e.g. float or double), often because
/// results cannot be represented accurately with integers.
/// The method documentation mentions "(floating-point)" in those cases.
///
/// You generally don't have to care about the templated form (`sf::Vector3<T>`),
/// the most common specializations have special type aliases:
/// \li `sf::Vector3<float>` is `sf::Vector3f`
/// \li `sf::Vector3<int>` is `sf::Vector3i`
///
/// The `sf::Vector3` class has a small and simple interface, its x, y and z members
/// can be accessed directly (there are no accessors like `setX()`, `getX()`).
///
/// Usage example:
/// \code
/// sf::Vector3f v(16.5f, 24.f, -3.2f);
/// v.x = 18.2f;
/// float y = v.y;
///
/// sf::Vector3f w = v * 5.f;
/// sf::Vector3f u;
/// u = v + w;
///
/// float s = v.dot(w);
/// sf::Vector3f t = v.cross(w);
///
/// bool different = (v != u);
/// \endcode
///
/// Note: for 2-dimensional vectors, see `sf::Vector2`.
///
////////////////////////////////////////////////////////////
|