1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright (C) 2014-2022 Leandro Nini
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "utpp/utpp.h"
#include <limits>
#include <vector>
#include "../src/builders/residfp-builder/residfp/Spline.h"
#include "../src/builders/residfp-builder/residfp/Spline.cpp"
using namespace UnitTest;
using namespace reSIDfp;
const unsigned int OPAMP_SIZE = 33;
const Spline::Point opamp_voltage[OPAMP_SIZE] =
{
{ 0.81, 10.31 }, // Approximate start of actual range
{ 2.40, 10.31 },
{ 2.60, 10.30 },
{ 2.70, 10.29 },
{ 2.80, 10.26 },
{ 2.90, 10.17 },
{ 3.00, 10.04 },
{ 3.10, 9.83 },
{ 3.20, 9.58 },
{ 3.30, 9.32 },
{ 3.50, 8.69 },
{ 3.70, 8.00 },
{ 4.00, 6.89 },
{ 4.40, 5.21 },
{ 4.54, 4.54 }, // Working point (vi = vo)
{ 4.60, 4.19 },
{ 4.80, 3.00 },
{ 4.90, 2.30 }, // Change of curvature
{ 4.95, 2.03 },
{ 5.00, 1.88 },
{ 5.05, 1.77 },
{ 5.10, 1.69 },
{ 5.20, 1.58 },
{ 5.40, 1.44 },
{ 5.60, 1.33 },
{ 5.80, 1.26 },
{ 6.00, 1.21 },
{ 6.40, 1.12 },
{ 7.00, 1.02 },
{ 7.50, 0.97 },
{ 8.50, 0.89 },
{ 10.00, 0.81 },
{ 10.31, 0.81 }, // Approximate end of actual range
};
SUITE(Spline)
{
TEST(TestMonotonicity)
{
Spline s(std::vector<Spline::Point>(std::begin(opamp_voltage), std::end(opamp_voltage)));
double old = std::numeric_limits<double>::max();
for (double x = 0.0; x < 12.0; x+=0.01)
{
Spline::Point out = s.evaluate(x);
CHECK(out.x <= old);
old = out.x;
}
}
TEST(TestPoints)
{
Spline s(std::vector<Spline::Point>(std::begin(opamp_voltage), std::end(opamp_voltage)));
for (unsigned int i = 0; i < OPAMP_SIZE; i++)
{
Spline::Point out = s.evaluate(opamp_voltage[i].x);
CHECK_EQUAL(opamp_voltage[i].y, out.x);
}
}
TEST(TestInterpolateOutsideBounds)
{
const Spline::Point values[5] = {
{ 10, 15 },
{ 15, 20 },
{ 20, 30 },
{ 25, 40 },
{ 30, 45 },
};
Spline s(std::vector<Spline::Point>(std::begin(values), std::end(values)));
Spline::Point out;
out = s.evaluate(5);
CHECK_CLOSE(6.66667, out.x, 0.00001);
out = s.evaluate(40);
CHECK_CLOSE(75.0, out.x, 0.00001);
}
}
|