1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
<?xml version="1.0" encoding="utf-8"?>
<book xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="5.0" xml:id="index" xml:lang="en">
<info>
<title>libsigc++</title>
<author><personname>
<firstname>Ainsley</firstname>
<surname>Pereira</surname>
</personname></author>
<date>September 2002</date>
<pubdate>September 2002. Updated January 2004 by Murray Cumming</pubdate>
<abstract>
<para>libsigc++ is a C++ template library implementing typesafe callbacks. This is an intro to libsigc++.</para>
</abstract>
</info>
<chapter xml:id="chapter-introduction">
<info><title>Introduction</title></info>
<section xml:id="sect-motivation">
<info><title>Motivation</title></info>
<para>There are many situations in which it is desirable to decouple code that
detects an event, and the code that deals with it. This is especially common in
GUI programming, where a toolkit might provide user interface elements such as
clickable buttons but, being a generic toolkit, doesn't know how an individual
application using that toolkit should handle the user clicking on it.</para>
<para>In C the callbacks are generally handled by the application calling a
'register' function and passing a pointer to a function and a <literal remap="tt">void*</literal>
argument, eg.</para>
<programlisting>
void clicked(void* data);
button* okbutton = create_button("ok");
static char somedata[] = "This is some data I want the clicked() function to have";
register_click_handler(okbutton, clicked, somedata);
</programlisting>
<para>When clicked, the toolkit will call <literal remap="tt">clicked()</literal> with the data pointer passed
to the <literal remap="tt">register_click_handler()</literal> function.</para>
<para>This works in C, but is not typesafe. There is no compile-time way of
ensuring that <literal remap="tt">clicked()</literal> isn't expecting a struct of some sort instead of a
<literal remap="tt">char*</literal>.</para>
<para>As C++ programmers, we want type safety. We also want to be able to use
things other than free-standing functions as callbacks.</para>
<para>libsigc++ provides the concept of a slot, which holds a reference to one of
the things that can be used as a callback:
<itemizedlist>
<listitem><para>A free-standing function as in the example</para></listitem>
<listitem><para>A functor object that defines operator() (a lambda expression
is such an object)</para></listitem>
<listitem><para>A pointer-to-a-member-function and an instance of an object on which to invoke it (the
object should inherit from <literal remap="tt">sigc::trackable</literal>)</para></listitem>
</itemizedlist></para>
<para>All of which can take different numbers and types of arguments.</para>
<para>To make it easier to construct these, libsigc++ provides the sigc::ptr_fun() and sigc::mem_fun() functions, for creating slots from static functions and member functions, respectively. They return
a generic <literal remap="tt">signal::slot</literal> type that can be invoked with <literal remap="tt">emit()</literal> or <literal remap="tt">operator()</literal>.</para>
<para>For the other side of the fence, libsigc++ provides <literal remap="tt">signal</literal>s, to which the
client can attach <literal remap="tt">slot</literal>s. When the <literal remap="tt">signal</literal> is emitted, all the connected
<literal remap="tt">slot</literal>s are called.</para>
</section>
</chapter>
<chapter xml:id="chapter-connecting">
<info><title>Connecting your code to signals</title></info>
<section xml:id="sect-simple-ex">
<info><title>A simple example</title></info>
<para>So to get some experience, lets look at a simple example...</para>
<para>Lets say you and I are writing an application which informs the user when
aliens land in the car park. To keep the design nice and clean, and allow for
maximum portability to different interfaces, we decide to use libsigc++ to
split the project in two parts.</para>
<para>I will write the <literal remap="tt">AlienDetector</literal> class, and you will write the code to inform
the user. (Well, OK, I'll write both, but we're pretending, remember?)</para>
<para>Here's my class:</para>
<programlisting>
class AlienDetector
{
public:
AlienDetector();
void run();
sigc::signal<void()> signal_detected;
};
</programlisting>
<para>(I'll explain the type of signal_detected later.)</para>
<para>Here's your code that uses it:</para>
<programlisting>
void warn_people()
{
std::cout << "There are aliens in the carpark!" << std::endl;
}
int main()
{
AlienDetector mydetector;
mydetector.signal_detected.connect( sigc::ptr_fun(warn_people) );
mydetector.run();
return 0;
}
</programlisting>
<para>You can use a lambda expression instead of sigc::ptr_fun().</para>
<programlisting>
mydetector.signal_detected.connect( [](){ warn_people(); } );
</programlisting>
<para>Pretty simple really - you call the <literal remap="tt">connect()</literal> method on the signal to
connect your function. <literal remap="tt">connect()</literal> takes a <literal remap="tt">slot</literal> parameter (remember slots
are capable of holding any type of callback), so you convert your
<literal remap="tt">warn_people()</literal> function to a slot using the <literal remap="tt">slot()</literal> function.</para>
<para>To compile this example, use:</para>
<programlisting>g++ example1.cc -o example1 `pkg-config --cflags --libs sigc++-2.0`</programlisting>
<para>Note that those `` characters are backticks, not single quotes. Run it with</para>
<programlisting>./example1</programlisting>
<para>(Try not to panic when the aliens land!)</para>
</section>
<section xml:id="sect-using-mem-func">
<info><title>Using a member function</title></info>
<para>Suppose you found a more sophisticated alien alerter class on the web,
such as this:</para>
<programlisting>
class AlienAlerter : public sigc::trackable
{
public:
AlienAlerter(char const* servername);
void alert();
private:
// ...
};
</programlisting>
<para>(Handily it derives from <literal remap="tt">sigc::trackable</literal> already. This isn't quite so
unlikely as you might think; all appropriate bits of the popular gtkmm library do so,
for example.)</para>
<para>You could rewrite your code as follows:</para>
<programlisting>
int main()
{
AlienDetector mydetector;
AlienAlerter myalerter("localhost"); // added
mydetector.signal_detected.connect( sigc::mem_fun(myalerter, &AlienAlerter::alert) ); // changed
mydetector.run();
return 0;
}
</programlisting>
<para>Note that only 2 lines are different - one to create an instance of the
class, and the line to connect the method to the signal.</para>
<para>This code is in example2.cc, which can be compiled in the same way as
example1.cc</para>
<para>It's possible to use a lambda expression instead of sigc::mem_fun(),
but it's not recommended, if the class derives from <literal remap="tt">sigc::trackable</literal>.
With a lambda expression you would lose the automatic disconnection that the
combination of <literal remap="tt">sigc::trackable</literal> and sigc::mem_fun()
offers.</para>
</section>
<section xml:id="sect-signals-with-pars">
<info><title>Signals with parameters</title></info>
<para>Functions taking no parameters and returning void are quite useful,
especially when they're members of classes that can store unlimited amounts of
safely typed data, but they're not sufficient for everything.</para>
<para>What if aliens don't land in the carpark, but somewhere else? Let's modify
the example so that the callback function takes a <literal remap="tt">std::string</literal> with the location
in which aliens were detected.</para>
<para>I change my class to:</para>
<programlisting>
class AlienDetector
{
public:
AlienDetector();
void run();
sigc::signal<void(std::string)> signal_detected; // changed
};
</programlisting>
<para>The only line I had to change was the signal line (in <literal remap="tt">run()</literal> I need to change
my code to supply the argument when I emit the signal too, but that's not shown
here).</para>
<para>The name of the type is '<literal remap="tt">sigc::signal</literal>'.
The template parameters are the return type, then the argument types in parentheses.
(libsigc++2 also accepts a different syntax, with a comma between the return type
and the parameter types. That syntax is deprecated, though.)</para>
<para>The types in the function signature are in the same order as the template
parameters, eg:</para>
<programlisting>
sigc::signal<void(std::string)>
void function(std::string foo);
</programlisting>
<para>So now you can update your alerter (for simplicity, lets go back to the
free-standing function version):</para>
<programlisting>
void warn_people(std::string where)
{
std::cout << "There are aliens in " << where << "!" << std::endl;
}
int main()
{
AlienDetector mydetector;
mydetector.signal_detected.connect( sigc::ptr_fun(warn_people) );
mydetector.run();
return 0;
}
</programlisting>
<para>Easy.</para>
</section>
<section xml:id="sect-disconnecting">
<info><title>Disconnecting</title></info>
<para>If you decide you no longer want your code to be called whenever a signal is
emitted, you must remember the return value of <literal remap="tt">connect()</literal>, which we've been
ignoring until now.</para>
<para><literal remap="tt">connect()</literal> returns a <literal remap="tt">sigc::connection</literal> object, which has a <literal remap="tt">disconnect()</literal> member method. This does just what you think it does.</para>
</section>
</chapter>
<chapter xml:id="chapter-writing">
<info><title>Writing your own signals</title></info>
<section xml:id="sect-quick-recap">
<info><title>Quick recap</title></info>
<para>If all you want to do is use gtkmm, and connect your functionality to its
signals, you can probably stop reading here.</para>
<para>You might benefit from reading on anyway though, as this section is going to
be quite simple, and the 'Rebinding' technique from the next section is
occasionally useful.</para>
<para>We've already covered the way the types of signals are made up, but lets
recap:</para>
<para>A signal is an instance of a template, named <literal remap="tt">sigc::signal</literal>.
The template arguments are the types,
in the order they appear in the function signature that can be connected to that
signal; that is the return type, then the argument types in parentheses.</para>
<para>To provide a signal for people to connect to, you must make available an
instance of that <literal remap="tt">sigc::signal</literal>. In <literal remap="tt">AlienDetector</literal> this was done
with a public data member. That's not considered good practice usually, so you
might want to consider making a member function that returns the signal by
reference. (This is what gtkmm does.)</para>
<para>Once you've done this, all you have to do is emit the signal when you're
ready. Look at the code for <literal remap="tt">AlienDetector::run()</literal>:</para>
<programlisting>
void AlienDetector::run()
{
sleep(3); // wait for aliens
signal_detected.emit(); // panic!
}
</programlisting>
<para>As a shortcut, <literal remap="tt">sigc::signal</literal> defines <literal remap="tt">operator()</literal> as a synonym for
<literal remap="tt">emit()</literal>, so you could just write <literal remap="tt">signal_detected();</literal> as in the second
example version:</para>
<programlisting>
void AlienDetector::run()
{
sleep(3); // wait for aliens
signal_detected("the carpark"); // this is the std::string version, looks like
// they landed in the carpark after all.
}
</programlisting>
</section>
<section xml:id="sect-return-values">
<info><title>What about return values?</title></info>
<para>If you only ever have one slot connected to a signal, or if you only care
about the return value of the last registered one, it's quite straightforward:</para>
<programlisting>
sigc::signal<int()> somesignal;
int a_return_value;
a_return_value = somesignal.emit();
</programlisting>
</section>
</chapter>
<chapter xml:id="chapter-advanced">
<info><title>Advanced topics</title></info>
<section xml:id="sect-rebinding">
<info><title>Rebinding</title></info>
<para>Suppose you already have a function that you want to be called when a
signal is emitted, but it takes the wrong argument types. For example, lets try
to attach the <literal remap="tt">warn_people(std::string)</literal> function to the detected signal
from the first example, which didn't supply a location string.</para>
<para>Just trying to connect it with:</para>
<programlisting>
myaliendetector.signal_detected.connect(sigc::ptr_fun(warn_people));
</programlisting>
<para>results in a compile-time error, because the types don't match. This is good!
This is typesafety at work. In the C way of doing things, this would have just
died at runtime after trying to print a random bit of memory as the location -
ick!</para>
<para>We have to make up a location string, and bind it to the function, so that
when signal_detected is emitted with no arguments, something adds it in before
<literal remap="tt">warn_people</literal> is actually called.</para>
<para>We could write it ourselves - it's not hard:</para>
<programlisting>
void warn_people_wrapper() // note this is the signature that 'signal_detected' expects
{
warn_people("the carpark");
}
</programlisting>
<para>but after our first million or so we might start looking for a better way. As
it happens, libsigc++ has one.</para>
<programlisting>
sigc::bind(slot, arg);
</programlisting>
<para>binds arg as the argument to slot, and returns a new slot of the same return
type, but with one fewer arguments.</para>
<para>Now we can write:</para>
<programlisting>
myaliendetector.signal_detected.connect(sigc::bind( sigc::ptr_fun(warn_people), "the carpark" ) );
</programlisting>
<para>If the input slot has multiple args, the rightmost one is bound.</para>
<para>The return type can also be bound with <literal remap="tt">sigc::bind_return(slot, returnvalue);</literal> though
this is not so commonly useful.</para>
<para>So if we can attach the new <literal remap="tt">warn_people()</literal> to the old detector, can we attach
the old <literal remap="tt">warn_people</literal> (the one that didn't take an argument) to the new detector?</para>
<para>Of course, we just need to hide the extra argument. This can be done with
<literal remap="tt">sigc::hide</literal>, eg.</para>
<programlisting>
myaliendetector.signal_detected.connect( sigc::hide<std::string>( sigc::ptr_fun(warn_people) ) );
</programlisting>
<para>The template arguments are the types to hide (from the right only - you can't
hide the first argument of 3, for example, only the last).</para>
<para><literal remap="tt">sigc::hide_return</literal> effectively makes the return type void.</para>
</section>
<section xml:id="sect-retyping">
<info><title>Retyping</title></info>
<para>A similar topic is retyping. Perhaps you have a signal that takes an <literal remap="tt">int</literal>, but
you want to connect a function that takes a <literal remap="tt">double</literal>.</para>
<para>This can be achieved with the <literal remap="tt">sigc::retype()</literal> template.
It takes a <literal remap="tt">sigc::slot</literal>, and returns a <literal remap="tt">sigc::slot</literal>. eg.</para>
<programlisting>
void dostuff(double foo)
{
}
sigc::signal<void(int)> asignal;
asignal.connect( sigc::retype( sigc::ptr_fun(&dostuff) ) );
</programlisting>
<para>If you only want to change the return type, you can use <literal remap="tt">sigc::retype_return()</literal>.
<literal remap="tt">retype_return()</literal> needs one template argument, the new return type.</para>
</section>
</chapter>
<chapter xml:id="chapter-reference">
<info><title>Reference</title></info>
<para>See the reference documentation <link xlink:href="http://library.gnome.org/devel/libsigc++/2.10/">online</link></para>
</chapter>
</book>
|