File: signal.h.m4

package info (click to toggle)
libsigc%2B%2B-2.0 2.10.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 5,180 kB
  • sloc: sh: 4,246; cpp: 3,990; xml: 313; perl: 236; makefile: 174; ansic: 44
file content (1296 lines) | stat: -rw-r--r-- 41,473 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
dnl Copyright 2002, The libsigc++ Development Team 
dnl 
dnl This library is free software; you can redistribute it and/or 
dnl modify it under the terms of the GNU Lesser General Public 
dnl License as published by the Free Software Foundation; either 
dnl version 2.1 of the License, or (at your option) any later version. 
dnl 
dnl This library is distributed in the hope that it will be useful, 
dnl but WITHOUT ANY WARRANTY; without even the implied warranty of 
dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
dnl Lesser General Public License for more details. 
dnl 
dnl You should have received a copy of the GNU Lesser General Public 
dnl License along with this library; if not, write to the Free Software 
dnl Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 
dnl
divert(-1)

include(template.macros.m4)

define([SIGNAL_EMIT_N],[dnl
/** Abstracts signal emission.
 * This template implements the emit() function of signal$1.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, for example when the template
 * argument @e T_accumulator is @p nil.
 */
template <LIST(class T_return, LOOP(class T_arg%1, $1), class T_accumulator)>
struct signal_emit$1
{
  typedef signal_emit$1<LIST(T_return, LOOP(T_arg%1, $1), T_accumulator)> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return(LIST(LOOP(T_arg%1, $1)))> slot_type;
  typedef internal::slot_iterator_buf<self_type, T_return> slot_iterator_buf_type;
  typedef internal::slot_reverse_iterator_buf<self_type, T_return> slot_reverse_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

ifelse($1,0,,[dnl
  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
])dnl
  signal_emit$1(LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)) ifelse($1,0,,[
    : LOOP(_A_a%1_(_A_a%1), $1)]) {}

ifelse($1,0,[dnl
  /** Invokes a slot.],[
  /** Invokes a slot using the buffered parameter values.])
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (sigc::internal::function_pointer_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(LIST(_A_slot.rep_, LOOP(_A_a%1_, $1))); }
dnl  T_return operator()(const slot_type& _A_slot) const
dnl    { return _A_slot(LOOP(_A_a%1_, $1)); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.dnl
ifelse($1,0,,[
   * The arguments are buffered in a temporary instance of signal_emit$1.])
FOR(1, $1,[
   * @param _A_a%1 Argument to be passed on to the slots.])
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(LIST(signal_impl* impl, LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)))
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self ifelse($1,0,,[(LOOP(_A_a%1, $1))]);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }

_DEPRECATE_IFDEF_START
  /** Executes a list of slots using an accumulator of type @e T_accumulator in reverse order.dnl
ifelse($1,0,,[
   * The arguments are buffered in a temporary instance of signal_emit$1.])
FOR(1, $1,[
   * @param _A_a%1 Argument to be passed on to the slots.])
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   *
   * @deprecated This is apparently not useful, but please let us know if you need it.
   */
  static result_type emit_reverse(LIST(signal_impl* impl, LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)))
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self ifelse($1,0,,[(LOOP(_A_a%1, $1))]);
      return accumulator(slot_reverse_iterator_buf_type(slots.end(), &self),
                         slot_reverse_iterator_buf_type(slots.begin(), &self));
    }
_DEPRECATE_IFDEF_END

dnl
  FOR(1, $1,[
  type_trait_take_t<T_arg%1> _A_a%1_;])
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <LIST(class T_return, LOOP(class T_arg%1, $1))>
struct signal_emit$1<LIST(T_return, LOOP(T_arg%1, $1), nil)>
{
  typedef signal_emit$1<LIST(T_return, LOOP(T_arg%1, $1), nil) > self_type;
  typedef T_return result_type;
  typedef slot<T_return(LIST(LOOP(T_arg%1, $1)))> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.dnl
ifelse($1,0,,[
   * The arguments are passed directly on to the slots.])
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.dnl
FOR(1, $1,[
   * @param _A_a%1 Argument to be passed on to the slots.])
   * @return The return value of the last slot invoked.
   */
  static result_type emit(LIST(signal_impl* impl, LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)))
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        auto it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (sigc::internal::function_pointer_cast<call_type>(it->rep_->call_))(LIST(it->rep_, LOOP(_A_a%1, $1)));
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (sigc::internal::function_pointer_cast<call_type>(it->rep_->call_))(LIST(it->rep_, LOOP(_A_a%1, $1)));
          }
      }
      
      return r_;
    }

_DEPRECATE_IFDEF_START
  /** Executes a list of slots using an accumulator of type @e T_accumulator in reverse order.dnl
ifelse($1,0,,[
   * The arguments are passed directly on to the slots.])
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.dnl
FOR(1, $1,[
   * @param _A_a%1 Argument to be passed on to the slots.])
   * @return The return value of the last slot invoked.
   *
   * @deprecated This is apparently not useful, but please let us know if you need it.
   */
  static result_type emit_reverse(LIST(signal_impl* impl, LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)))
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
#ifndef SIGC_HAVE_SUN_REVERSE_ITERATOR
        typedef std::reverse_iterator<signal_impl::iterator_type> reverse_iterator_type;
#else
        typedef std::reverse_iterator<signal_impl::iterator_type, std::random_access_iterator_tag,
                                       slot_base, slot_base&, slot_base*, std::ptrdiff_t> reverse_iterator_type;
#endif

        temp_slot_list slots(impl->slots_);
        reverse_iterator_type it(slots.end());
        for (; it != reverse_iterator_type(slots.begin()); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == reverse_iterator_type(slots.begin()))
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (sigc::internal::function_pointer_cast<call_type>(it->rep_->call_))(LIST(it->rep_, LOOP(_A_a%1, $1)));
        for (++it; it != reverse_iterator_type(slots.begin()); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (sigc::internal::function_pointer_cast<call_type>(it->rep_->call_))(LIST(it->rep_, LOOP(_A_a%1, $1)));
          }
      }
      
      return r_;
    }
_DEPRECATE_IFDEF_END
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <LOOP(class T_arg%1, $1)>
struct signal_emit$1<LIST(void, LOOP(T_arg%1, $1), nil)>
{
  typedef signal_emit$1<LIST(void, LOOP(T_arg%1, $1), nil)> self_type;
  typedef void result_type;
  typedef slot<void(LIST(LOOP(T_arg%1, $1)))> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef ifelse($1,0,void (*call_type)(slot_rep*),typename slot_type::call_type call_type);

  /** Executes a list of slots using an accumulator of type @e T_accumulator.dnl
ifelse($1,0,,[
   * The arguments are passed directly on to the slots.])
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.dnl
FOR(1, $1,[
   * @param _A_a%1 Argument to be passed on to the slots.])
   */
  static result_type emit(LIST(signal_impl* impl, LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)))
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (const auto& slot : slots)
        {
          if (slot.empty() || slot.blocked())
            continue;
          (sigc::internal::function_pointer_cast<call_type>(slot.rep_->call_))(LIST(slot.rep_, LOOP(_A_a%1, $1)));
        }
    }

_DEPRECATE_IFDEF_START
  /** Executes a list of slots using an accumulator of type @e T_accumulator in reverse order.dnl
ifelse($1,0,,[
   * The arguments are passed directly on to the slots.])
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.dnl
FOR(1, $1,[
   * @param _A_a%1 Argument to be passed on to the slots.])
   *
   * @deprecated This is apparently not useful, but please let us know if you need it.
   */
  static result_type emit_reverse(LIST(signal_impl* impl, LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)))
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

#ifndef SIGC_HAVE_SUN_REVERSE_ITERATOR
      typedef std::reverse_iterator<signal_impl::iterator_type> reverse_iterator_type;
#else
      typedef std::reverse_iterator<signal_impl::iterator_type, std::random_access_iterator_tag,
                                     slot_base, slot_base&, slot_base*, std::ptrdiff_t> reverse_iterator_type;
#endif
      for (auto it = reverse_iterator_type(slots.end()); it != reverse_iterator_type(slots.begin()); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (sigc::internal::function_pointer_cast<call_type>(it->rep_->call_))(LIST(it->rep_, LOOP(_A_a%1, $1)));
        }
    }
_DEPRECATE_IFDEF_END
};

])
define([SIGNAL_N],[dnl
/** Signal declaration.
 * signal$1 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitly.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed, which is probably not what you want.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).dnl
FOR(1,$1,[
 * - @e T_arg%1 Argument type used in the definition of emit().])
 * - @e T_accumulator The accumulator type used for emission. The default
 * @p nil means that no accumulator should be used, for example if signal
 * emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <LIST(class T_return, LOOP(class T_arg%1, $1), class T_accumulator=nil)>
class signal$1
  : public signal_base
{
public:
  typedef internal::signal_emit$1<LIST(T_return, LOOP(T_arg%1, $1), T_accumulator)> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return(LIST(LOOP(T_arg%1, $1)))>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitly.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitly converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   *
   * std::function<> and C++11 lambda expressions are functors.
   * These are examples of functors that can be connected to a signal.
   *
   * %std::bind() creates a functor, but this functor typically has an
   * %operator()() which is a variadic template.
   * Our functor_trait can't deduce the result type
   * of such a functor. If you first assign the return value of %std::bind()
   * to a std::function, you can connect the std::function to a signal.
   *
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Add a slot to the list of slots.
   * @see connect(const slot_type& slot_).
   *
   * @newin{2,8}
   */
  iterator connect(slot_type&& slot_)
    { return iterator(signal_base::connect(std::move(static_cast<slot_base&>(slot_)))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.dnl
FOR(1, $1,[
   * @param _A_a%1 Argument to be passed on to the slots.])
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)) const
    { return emitter_type::emit(LIST(impl_, LOOP(_A_a%1, $1))); }

_DEPRECATE_IFDEF_START
  /** Triggers the emission of the signal in reverse order (see emit()).
   *
   * @deprecated This is apparently not useful, but please let us know if you need it.
   */
  result_type emit_reverse(LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)) const
    { return emitter_type::emit_reverse(LIST(impl_, LOOP(_A_a%1, $1))); }
_DEPRECATE_IFDEF_END

  /** Triggers the emission of the signal (see emit()).
   *
   * @deprecated This is apparently not useful, but let us know if you need it.
   */
  result_type operator()(LOOP(type_trait_take_t<T_arg%1> _A_a%1, $1)) const
    { return emit(LOOP(_A_a%1, $1)); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal$1::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor$1<LIST(result_type, signal$1, LOOP(type_trait_take_t<T_arg%1>, $1))> make_slot() const
    { return bound_const_mem_functor$1<LIST(result_type, signal$1, LOOP(type_trait_take_t<T_arg%1>, $1))>(*this, &signal$1::emit); }

_DEPRECATE_IFDEF_START
  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   *
   * @deprecated This is apparently not useful, but please let us know if you need it.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   *
   * @deprecated This is apparently not useful, but please let us know if you need it.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal$1*>(this)->impl()); }
_DEPRECATE_IFDEF_END

  signal$1() {}

  signal$1(const signal$1& src)
    : signal_base(src) {}

  signal$1(signal$1&& src)
    : signal_base(std::move(src)) {}

  signal$1& operator=(const signal$1& src)
  {
    signal_base::operator=(src);
    return *this;
  }

  signal$1& operator=(signal$1&& src)
  {
    signal_base::operator=(std::move(src));
    return *this;
  }
};

])
define([SIGNAL],[dnl
ifelse($1, $2,[dnl
/** Convenience wrapper for the numbered sigc::signal# templates.
 * signal can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitly.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed, which is probably not what you want!
 *
 * The template arguments determine the function signature of
 * the emit() function:
 * - @e T_return The desired return type of the emit() function.dnl
FOR(1,$1,[
 * - @e T_arg%1 Argument type used in the definition of emit(). The default @p nil means no argument.])
 *
 * To specify an accumulator type the nested class signal::accumulated can be used.
 *
 * @par Example:
 * @code
 * void foo(int) {}
 * sigc::signal<void, long> sig;
 * sig.connect(sigc::ptr_fun(&foo));
 * sig.emit(19);
 * @endcode
 *
 * @deprecated Please use the syntax similar to that used by std::function<>:
 * @code
 * sigc::slot<void(bool, int)> some_slot;
 * @endcode
 *
 * @ingroup signal
 */
template <LIST(class T_return, LOOP(class T_arg%1 = nil, $1))>
class signal],[dnl

/** Convenience wrapper for the numbered sigc::signal$1 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for $1 argument(s).
 *
 * @deprecated Please use the syntax similar to that used by std::function<>:
 * @code
 * sigc::slot<void(bool, int)> some_slot;
 * @endcode
ifelse($1, $2,[dnl
 *
 * @ingroup signal
])dnl
 */
template <LIST(class T_return, LOOP(class T_arg%1, $1))>
class signal ifelse($1, $2,,[<LIST(T_return, LOOP(T_arg%1,$1), LOOP(nil, CALL_SIZE - $1))>])])
  : public signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>
{
public:
ifelse($1, $2,[dnl
  /** Convenience wrapper for the numbered sigc::signal# templates.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   *
   * An accumulator is a functor that uses a pair of special iterators
   * to step through a list of slots and calculate a return value
   * from the results of the slot invokations. The iterators' operator*()
   * executes the slot. The return value is buffered, so that in an expression
   * like @code a = (*i) * (*i); @endcode the slot is executed only once.
   * The accumulator must define its return value as @p result_type.
   * 
   * @par Example 1:
   * This accumulator calculates the arithmetic mean value:
   * @code
   * struct arithmetic_mean_accumulator
   * {
   *   typedef double result_type;
   *   template<typename T_iterator>
   *   result_type operator()(T_iterator first, T_iterator last) const
   *   {
   *     result_type value_ = 0;
   *     int n_ = 0;
   *     for (; first != last; ++first, ++n_)
   *       value_ += *first;
   *     return value_ / n_;
   *   }
   * };
   * @endcode
   *
   * @par Example 2:
   * This accumulator stops signal emission when a slot returns zero:
   * @code
   * struct interruptable_accumulator
   * {
   *   typedef bool result_type;
   *   template<typename T_iterator>
   *   result_type operator()(T_iterator first, T_iterator last) const
   *   {
   *     for (; first != last; ++first, ++n_)
   *       if (!*first) return false;
   *     return true;
   *   }
   * };
   * @endcode
   *
   * @ingroup signal
],[
  /** Convenience wrapper for the numbered sigc::signal$1 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
])dnl
   */
  template <class T_accumulator>
  class accumulated
    : public signal$1<LIST(T_return, LOOP(T_arg%1, $1), T_accumulator)>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal$1<LIST(T_return, LOOP(T_arg%1, $1), T_accumulator)>(src) {}
  };

  signal() {}

  signal(const signal& src)
    : signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>(src) {}

  signal(signal&& src)
    : signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>(std::move(src)) {}

  signal& operator=(const signal& src)
  {
    signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>::operator=(src);
    return *this;
  }

  signal& operator=(signal&& src)
  {
    signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>::operator=(std::move(src));
    return *this;
  }
};

/**
 * This specialization allow use of the  sigc::signal<R(Args...)> syntax,
 */
template <LIST(class T_return, LOOP(class T_arg%1, $1))>
class signal<T_return(LIST(LOOP(T_arg%1, $1)))>
  : public signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>
{
public:
ifelse($1, $2,[dnl
  /** Convenience wrapper for the numbered sigc::signal# templates.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   *
   * An accumulator is a functor that uses a pair of special iterators
   * to step through a list of slots and calculate a return value
   * from the results of the slot invokations. The iterators' operator*()
   * executes the slot. The return value is buffered, so that in an expression
   * like @code a = (*i) * (*i); @endcode the slot is executed only once.
   * The accumulator must define its return value as @p result_type.
   *
   * @par Example 1:
   * This accumulator calculates the arithmetic mean value:
   * @code
   * struct arithmetic_mean_accumulator
   * {
   *   typedef double result_type;
   *   template<typename T_iterator>
   *   result_type operator()(T_iterator first, T_iterator last) const
   *   {
   *     result_type value_ = 0;
   *     int n_ = 0;
   *     for (; first != last; ++first, ++n_)
   *       value_ += *first;
   *     return value_ / n_;
   *   }
   * };
   * @endcode
   *
   * @par Example 2:
   * This accumulator stops signal emission when a slot returns zero:
   * @code
   * struct interruptable_accumulator
   * {
   *   typedef bool result_type;
   *   template<typename T_iterator>
   *   result_type operator()(T_iterator first, T_iterator last) const
   *   {
   *     for (; first != last; ++first, ++n_)
   *       if (!*first) return false;
   *     return true;
   *   }
   * };
   * @endcode
   *
   * @ingroup signal
],[
  /** Convenience wrapper for the numbered sigc::signal$1 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
])dnl
   */
  template <class T_accumulator>
  class accumulated
    : public signal$1<LIST(T_return, LOOP(T_arg%1, $1), T_accumulator)>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal$1<LIST(T_return, LOOP(T_arg%1, $1), T_accumulator)>(src) {}
  };

  signal() {}

  signal(const signal& src)
    : signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>(src) {}

  signal(signal&& src)
    : signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>(std::move(src)) {}

  signal& operator=(const signal& src)
  {
    signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>::operator=(src);
    return *this;
  }

  signal& operator=(signal&& src)
  {
    signal$1<LIST(T_return, LOOP(T_arg%1, $1),nil)>::operator=(std::move(src));
    return *this;
  }
};


])

divert(0)
#ifndef _SIGC_SIGNAL_H_
#define _SIGC_SIGNAL_H_

#include <list>
#include <sigc++/signal_base.h>
#include <sigc++/type_traits.h>
#include <sigc++/trackable.h>
#include <sigc++/functors/slot.h>
#include <sigc++/functors/mem_fun.h>

//TODO: See comment in functor_trait.h.
#if defined(nil) && defined(SIGC_PRAGMA_PUSH_POP_MACRO)
  #define SIGC_NIL_HAS_BEEN_PUSHED 1
  #pragma push_macro("nil")
  #undef nil
#endif

//SIGC_TYPEDEF_REDEFINE_ALLOWED:
// TODO: This should have its own test, but I can not create one that gives the error instead of just a warning. murrayc.
// I have just used this because there is a correlation between these two problems.
#ifdef SIGC_TEMPLATE_SPECIALIZATION_OPERATOR_OVERLOAD
  //Compilers, such as older versions of SUN Forte C++, that do not allow this also often
  //do not allow a typedef to have the same name as a class in the typedef's definition.
  //For Sun Forte CC 5.7 (SUN Workshop 10), comment this out to fix the build.
  //
  // Debian-specific patch: gcc-4.3 does not allow this either, and the
  // comments below say this is a backwards-compatibility typedef, so
  // just don't enable this feature at all.
  //#define SIGC_TYPEDEF_REDEFINE_ALLOWED 1
#endif

namespace sigc {

/** STL-style iterator for slot_list.
 *
 * @ingroup signal
 */
template <typename T_slot>
struct slot_iterator
{
  typedef std::size_t                     size_type;
  typedef std::ptrdiff_t                  difference_type;
  typedef std::bidirectional_iterator_tag iterator_category;

  typedef T_slot  slot_type;

  typedef T_slot  value_type;
  typedef T_slot* pointer;
  typedef T_slot& reference;

  typedef typename internal::signal_impl::iterator_type iterator_type;

  slot_iterator()
    {}

  explicit slot_iterator(const iterator_type& i)
    : i_(i) {}

  reference operator*() const
    { return static_cast<reference>(*i_); }

  pointer operator->() const
    { return &(operator*()); }

  slot_iterator& operator++()
    {
      ++i_;
      return *this;
    }

  slot_iterator operator++(int)
    { 
      slot_iterator __tmp(*this);
      ++i_;
      return __tmp;
    }

  slot_iterator& operator--()
    {
      --i_;
      return *this;
    }

  slot_iterator operator--(int)
    {
      slot_iterator __tmp(*this);
      --i_;
      return __tmp;
    }

  bool operator == (const slot_iterator& other) const
    { return i_ == other.i_; }

  bool operator != (const slot_iterator& other) const
    { return i_ != other.i_; }

  iterator_type i_;
};

/** STL-style const iterator for slot_list.
 *
 * @ingroup signal
 */
template <typename T_slot>
struct slot_const_iterator
{
  typedef std::size_t                     size_type;
  typedef std::ptrdiff_t                  difference_type;
  typedef std::bidirectional_iterator_tag iterator_category;

  typedef T_slot        slot_type;

  typedef T_slot        value_type;
  typedef const T_slot* pointer;
  typedef const T_slot& reference;

  typedef typename internal::signal_impl::const_iterator_type iterator_type;

  slot_const_iterator()
    {}

  explicit slot_const_iterator(const iterator_type& i)
    : i_(i) {}

  reference operator*() const
    { return static_cast<reference>(*i_); }

  pointer operator->() const
    { return &(operator*()); }

  slot_const_iterator& operator++()
    {
      ++i_;
      return *this;
    }

  slot_const_iterator operator++(int)
    { 
      slot_const_iterator __tmp(*this);
      ++i_;
      return __tmp;
    }

  slot_const_iterator& operator--()
    {
      --i_;
      return *this;
    }

  slot_const_iterator operator--(int)
    {
      slot_const_iterator __tmp(*this);
      --i_;
      return __tmp;
    }

  bool operator == (const slot_const_iterator& other) const
    { return i_ == other.i_; }

  bool operator != (const slot_const_iterator& other) const
    { return i_ != other.i_; }

  iterator_type i_;
};

/** STL-style list interface for sigc::signal#.
 * slot_list can be used to iterate over the list of slots that
 * is managed by a signal. Slots can be added or removed from
 * the list while existing iterators stay valid.
 *
 * @ingroup signal
 */
template <class T_slot>
struct slot_list
{
  typedef T_slot slot_type;

  typedef slot_type&       reference;
  typedef const slot_type& const_reference;

  typedef slot_iterator<slot_type>              iterator;
  typedef slot_const_iterator<slot_type>        const_iterator;
  
  #ifndef SIGC_HAVE_SUN_REVERSE_ITERATOR
  typedef std::reverse_iterator<iterator>       reverse_iterator;
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  #else
  typedef std::reverse_iterator<iterator, std::random_access_iterator_tag,
                                int, int&, int*, std::ptrdiff_t> reverse_iterator;

  typedef std::reverse_iterator<const_iterator, std::random_access_iterator_tag,
                                int, const int&, const int*, std::ptrdiff_t> const_reverse_iterator;
  #endif /* SIGC_HAVE_SUN_REVERSE_ITERATOR */


  slot_list()
    : list_(nullptr) {}

  explicit slot_list(internal::signal_impl* __list)
    : list_(__list) {}

  iterator begin()
    { return iterator(list_->slots_.begin()); }

  const_iterator begin() const
    { return const_iterator(list_->slots_.begin()); }

  iterator end()
    { return iterator(list_->slots_.end()); }

  const_iterator end() const
    { return const_iterator(list_->slots_.end()); }

  reverse_iterator rbegin() 
    { return reverse_iterator(end()); }

  const_reverse_iterator rbegin() const 
    { return const_reverse_iterator(end()); }

  reverse_iterator rend()
    { return reverse_iterator(begin()); }

  const_reverse_iterator rend() const
    { return const_reverse_iterator(begin()); }

  reference front()
    { return *begin(); }

  const_reference front() const
    { return *begin(); }

  reference back()
    { return *(--end()); }

  const_reference back() const
    { return *(--end()); }

  iterator insert(iterator i, const slot_type& slot_)
    { return iterator(list_->insert(i.i_, static_cast<const slot_base&>(slot_))); }

  iterator insert(iterator i, slot_type&& slot_)
    { return iterator(list_->insert(i.i_, std::move(static_cast<slot_base&>(slot_)))); }

  void push_front(const slot_type& c)
    { insert(begin(), c); }

  void push_front(slot_type&& c)
    { insert(begin(), std::move(c)); }

  void push_back(const slot_type& c)
    { insert(end(), c); }

  void push_back(slot_type&& c)
    { insert(end(), std::move(c)); }

  iterator erase(iterator i)
    { return iterator(list_->erase(i.i_)); }

  iterator erase(iterator first_, iterator last_)
    {
      while (first_ != last_)
        first_ = erase(first_);
      return last_;
    }

  void pop_front()
    { erase(begin()); }

  void pop_back()
    { 
      auto tmp_ = end();
      erase(--tmp_);
    }

protected:
  internal::signal_impl* list_;
};


namespace internal {

/** Special iterator over sigc::internal::signal_impl's slot list that holds extra data.
 * This iterators is for use in accumulators. operator*() executes
 * the slot. The return value is buffered, so that in an expression
 * like @code a = (*i) * (*i); @endcode the slot is executed only once.
 */
template <class T_emitter, class T_result = typename T_emitter::result_type>
struct slot_iterator_buf
{
  typedef std::size_t                      size_type;
  typedef std::ptrdiff_t                   difference_type;
  typedef std::bidirectional_iterator_tag  iterator_category;

  //These are needed just to make this a proper C++ iterator, 
  //that can be used with standard C++ algorithms.
  typedef T_result                         value_type;
  typedef T_result&                        reference;
  typedef T_result*                        pointer;

  typedef T_emitter                        emitter_type;
  typedef T_result                         result_type;
  typedef typename T_emitter::slot_type    slot_type;

  typedef signal_impl::const_iterator_type iterator_type;

  slot_iterator_buf()
    : c_(nullptr), invoked_(false) {}

  slot_iterator_buf(const iterator_type& i, const emitter_type* c)
    : i_(i), c_(c), invoked_(false) {}

  result_type operator*() const
    {
      if (!i_->empty() && !i_->blocked() && !invoked_)
        {
          r_ = (*c_)(static_cast<const slot_type&>(*i_));
          invoked_ = true;
        }
      return r_;
    }

  slot_iterator_buf& operator++()
    {
      ++i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator++(int)
    { 
      slot_iterator_buf __tmp(*this);
      ++i_;
      invoked_ = false;
      return __tmp;
    }

  slot_iterator_buf& operator--()
    {
      --i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator--(int)
    {
      slot_iterator_buf __tmp(*this);
      --i_;
      invoked_ = false;
      return __tmp;
    }

  bool operator == (const slot_iterator_buf& other) const
    { return (!c_ || (i_ == other.i_)); } /* If '!c_' the iterators are empty.
                                           * Unfortunately, empty stl iterators are not equal.
                                           * We are forcing equality so that 'first==last'
                                           * in the accumulator's emit function yields true. */

  bool operator != (const slot_iterator_buf& other) const
    { return (c_ && (i_ != other.i_)); }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable result_type r_;
  mutable bool invoked_;
};

/** Template specialization of slot_iterator_buf for void return signals.
 */
template <class T_emitter>
struct slot_iterator_buf<T_emitter, void>
{
  typedef std::size_t                      size_type;
  typedef std::ptrdiff_t                   difference_type;
  typedef std::bidirectional_iterator_tag  iterator_category;

  typedef T_emitter                        emitter_type;
  typedef void                             result_type;
  typedef typename T_emitter::slot_type    slot_type;

  typedef signal_impl::const_iterator_type iterator_type;

  slot_iterator_buf()
    : c_(nullptr), invoked_(false) {}

  slot_iterator_buf(const iterator_type& i, const emitter_type* c)
    : i_(i), c_(c), invoked_(false) {}

  void operator*() const
    {
      if (!i_->empty() && !i_->blocked() && !invoked_)
        {
          (*c_)(static_cast<const slot_type&>(*i_));
          invoked_ = true;
        }
    }

  slot_iterator_buf& operator++()
    {
      ++i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator++(int)
    { 
      slot_iterator_buf __tmp(*this);
      ++i_;
      invoked_ = false;
      return __tmp;
    }

  slot_iterator_buf& operator--()
    {
      --i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator--(int)
    {
      slot_iterator_buf __tmp(*this);
      --i_;
      invoked_ = false;
      return __tmp;
    }

  bool operator == (const slot_iterator_buf& other) const
    { return i_ == other.i_; }

  bool operator != (const slot_iterator_buf& other) const
    { return i_ != other.i_; }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable bool invoked_;
};

/** Reverse version of sigc::internal::slot_iterator_buf. */
template <class T_emitter, class T_result = typename T_emitter::result_type>
struct slot_reverse_iterator_buf
{
  typedef std::size_t                      size_type;
  typedef std::ptrdiff_t                   difference_type;
  typedef std::bidirectional_iterator_tag  iterator_category;

  //These are needed just to make this a proper C++ iterator, 
  //that can be used with standard C++ algorithms.
  typedef T_result                         value_type;
  typedef T_result&                        reference;
  typedef T_result*                        pointer;

  typedef T_emitter                        emitter_type;
  typedef T_result                         result_type;
  typedef typename T_emitter::slot_type    slot_type;

  typedef signal_impl::const_iterator_type iterator_type;

  slot_reverse_iterator_buf()
    : c_(nullptr), invoked_(false) {}

  slot_reverse_iterator_buf(const iterator_type& i, const emitter_type* c)
    : i_(i), c_(c), invoked_(false) {}

  result_type operator*() const
    {
      auto __tmp(i_);
	  --__tmp;
      if (!__tmp->empty() && !__tmp->blocked() && !invoked_)
        {
          r_ = (*c_)(static_cast<const slot_type&>(*__tmp));
          invoked_ = true;
        }
      return r_;
    }

  slot_reverse_iterator_buf& operator++()
    {
      --i_;
      invoked_ = false;
      return *this;
    }

  slot_reverse_iterator_buf operator++(int)
    { 
      slot_reverse_iterator_buf __tmp(*this);
      --i_;
      invoked_ = false;
      return __tmp;
    }

  slot_reverse_iterator_buf& operator--()
    {
      ++i_;
      invoked_ = false;
      return *this;
    }

  slot_reverse_iterator_buf operator--(int)
    {
      slot_reverse_iterator_buf __tmp(*this);
      ++i_;
      invoked_ = false;
      return __tmp;
    }

  bool operator == (const slot_reverse_iterator_buf& other) const
    { return (!c_ || (i_ == other.i_)); } /* If '!c_' the iterators are empty.
                                           * Unfortunately, empty stl iterators are not equal.
                                           * We are forcing equality so that 'first==last'
                                           * in the accumulator's emit function yields true. */

  bool operator != (const slot_reverse_iterator_buf& other) const
    { return (c_ && (i_ != other.i_)); }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable result_type r_;
  mutable bool invoked_;
};

/** Template specialization of slot_reverse_iterator_buf for void return signals.
 */
template <class T_emitter>
struct slot_reverse_iterator_buf<T_emitter, void>
{
  typedef std::size_t                      size_type;
  typedef std::ptrdiff_t                   difference_type;
  typedef std::bidirectional_iterator_tag  iterator_category;

  typedef T_emitter                        emitter_type;
  typedef void                             result_type;
  typedef typename T_emitter::slot_type    slot_type;

  typedef signal_impl::const_iterator_type iterator_type;

  slot_reverse_iterator_buf()
    : c_(nullptr), invoked_(false) {}

  slot_reverse_iterator_buf(const iterator_type& i, const emitter_type* c)
    : i_(i), c_(c), invoked_(false) {}

  void operator*() const
    {
      auto __tmp(i_);
	  --__tmp;
	  if (!__tmp->empty() && !__tmp->blocked() && !invoked_)
        {
          (*c_)(static_cast<const slot_type&>(*__tmp));
          invoked_ = true;
        }
    }

  slot_reverse_iterator_buf& operator++()
    {
      --i_;
      invoked_ = false;
      return *this;
    }

  slot_reverse_iterator_buf operator++(int)
    { 
      slot_reverse_iterator_buf __tmp(*this);
      --i_;
      invoked_ = false;
      return __tmp;
    }

  slot_reverse_iterator_buf& operator--()
    {
      ++i_;
      invoked_ = false;
      return *this;
    }

  slot_reverse_iterator_buf operator--(int)
    {
      slot_reverse_iterator_buf __tmp(*this);
      ++i_;
      invoked_ = false;
      return __tmp;
    }

  bool operator == (const slot_reverse_iterator_buf& other) const
    { return i_ == other.i_; }

  bool operator != (const slot_reverse_iterator_buf& other) const
    { return i_ != other.i_; }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable bool invoked_;
};

FOR(0,CALL_SIZE,[[SIGNAL_EMIT_N(%1)]])
} /* namespace internal */

FOR(0,CALL_SIZE,[[SIGNAL_N(%1)]])

SIGNAL(CALL_SIZE,CALL_SIZE)
FOR(0,eval(CALL_SIZE-1),[[SIGNAL(%1)]])

} /* namespace sigc */

#ifdef SIGC_NIL_HAS_BEEN_PUSHED
  #undef SIGC_NIL_HAS_BEEN_PUSHED
  #pragma pop_macro("nil")
#endif

#endif /* _SIGC_SIGNAL_H_ */