File: test_common_ccrypto.c

package info (click to toggle)
libsignal-protocol-c 2.3.1%2Bgit20171007-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 2,256 kB
  • sloc: ansic: 30,611; makefile: 10
file content (319 lines) | stat: -rw-r--r-- 7,961 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include "test_common.h"

#include <CommonCrypto/CommonDigest.h>
#include <CommonCrypto/CommonHMAC.h>
#include <CommonCrypto/CommonCryptor.h>

#include <stdio.h>

int test_random_generator(uint8_t *data, size_t len, void *user_data)
{
    arc4random_buf(data, len);
    return 0;

#if 0
    /*
     * Apple's documentation recommends this method for generating secure
     * random numbers. However, it is too slow for the purpose of unit tests.
     */
    int result = 0;

    FILE *fp = fopen("/dev/random", "r");
    if(!fp) {
        result = SG_ERR_UNKNOWN;
        goto complete;
    }

    size_t n = fread(data, 1, len, fp);
    if(n != len) {
        result = SG_ERR_UNKNOWN;
        goto complete;
    }

complete:
    if(fp) {
        fclose(fp);
    }
    return result;
#endif
}

int test_hmac_sha256_init(void **hmac_context, const uint8_t *key, size_t key_len, void *user_data)
{
    CCHmacContext *ctx = malloc(sizeof(CCHmacContext));
    if(!ctx) {
        return SG_ERR_NOMEM;
    }

    CCHmacInit(ctx, kCCHmacAlgSHA256, key, key_len);
    *hmac_context = ctx;

    return 0;
}

int test_hmac_sha256_update(void *hmac_context, const uint8_t *data, size_t data_len, void *user_data)
{
    CCHmacContext *ctx = hmac_context;
    CCHmacUpdate(ctx, data, data_len);
    return 0;
}

int test_hmac_sha256_final(void *hmac_context, signal_buffer **output, void *user_data)
{
    CCHmacContext *ctx = hmac_context;

    signal_buffer *output_buffer = signal_buffer_alloc(CC_SHA256_DIGEST_LENGTH);
    if(!output_buffer) {
        return SG_ERR_NOMEM;
    }

    CCHmacFinal(ctx, signal_buffer_data(output_buffer));

    *output = output_buffer;

    return 0;
}

void test_hmac_sha256_cleanup(void *hmac_context, void *user_data)
{
    if(hmac_context) {
        CCHmacContext *ctx = hmac_context;
        free(ctx);
    }
}

int test_sha512_digest_init(void **digest_context, void *user_data)
{
    int result = 0;

    CC_SHA512_CTX *ctx = malloc(sizeof(CC_SHA512_CTX));
    if(!ctx) {
        result = SG_ERR_NOMEM;
        goto complete;
    }

    result = CC_SHA512_Init(ctx);
    if(result != 1) {
        result = SG_ERR_UNKNOWN;
        goto complete;
    }

complete:
    if(result < 0) {
        if(ctx) {
            free(ctx);
        }
    }
    else {
        *digest_context = ctx;
    }
    return result;
}

int test_sha512_digest_update(void *digest_context, const uint8_t *data, size_t data_len, void *user_data)
{
    CC_SHA512_CTX *ctx = digest_context;

    int result = CC_SHA512_Update(ctx, data, data_len);

    return (result == 1) ? SG_SUCCESS : SG_ERR_UNKNOWN;
}

int test_sha512_digest_final(void *digest_context, signal_buffer **output, void *user_data)
{
    int result = 0;
    unsigned char md[CC_SHA512_DIGEST_LENGTH];
    CC_SHA512_CTX *ctx = digest_context;

    result = CC_SHA512_Final(md, ctx);
    if(result == 1) {
        result = SG_SUCCESS;
    }
    else {
        result = SG_ERR_UNKNOWN;
        goto complete;
    }

    result = CC_SHA512_Init(ctx);
    if(result == 1) {
        result = SG_SUCCESS;
    }
    else {
        result = SG_ERR_UNKNOWN;
        goto complete;
    }

    signal_buffer *output_buffer = signal_buffer_create(md, CC_SHA512_DIGEST_LENGTH);
    if(!output_buffer) {
        result = SG_ERR_NOMEM;
        goto complete;
    }

    *output = output_buffer;

complete:
    return result;
}

void test_sha512_digest_cleanup(void *digest_context, void *user_data)
{
    if(digest_context) {
        CC_SHA512_CTX *ctx = digest_context;
        free(ctx);
    }
}

int cc_status_to_result(CCCryptorStatus status)
{
    switch(status) {
    case kCCSuccess:
        return SG_SUCCESS;
    case kCCParamError:
    case kCCBufferTooSmall:
        return SG_ERR_INVAL;
    case kCCMemoryFailure:
        return SG_ERR_NOMEM;
    case kCCAlignmentError:
    case kCCDecodeError:
    case kCCUnimplemented:
    case kCCOverflow:
    case kCCRNGFailure:
    case kCCUnspecifiedError:
    case kCCCallSequenceError:
    default:
        return SG_ERR_UNKNOWN;
    }
}

int test_encrypt(signal_buffer **output,
        int cipher,
        const uint8_t *key, size_t key_len,
        const uint8_t *iv, size_t iv_len,
        const uint8_t *plaintext, size_t plaintext_len,
        void *user_data)
{
    int result = 0;
    uint8_t *out_buf = 0;
    CCCryptorStatus status = kCCSuccess;
    CCCryptorRef ref = 0;

    if(cipher == SG_CIPHER_AES_CBC_PKCS5) {
        status = CCCryptorCreate(kCCEncrypt, kCCAlgorithmAES, kCCOptionPKCS7Padding, key, key_len, iv, &ref);
    }
    else if(cipher == SG_CIPHER_AES_CTR_NOPADDING) {
        status = CCCryptorCreateWithMode(kCCEncrypt, kCCModeCTR, kCCAlgorithmAES, ccNoPadding,
                iv, key, key_len, 0, 0, 0, kCCModeOptionCTR_BE, &ref);
    }
    else {
        status = kCCParamError;
    }
    if(status != kCCSuccess) {
        result = cc_status_to_result(status);
        goto complete;
    }

    size_t available_len = CCCryptorGetOutputLength(ref, plaintext_len, 1);
    out_buf = malloc(available_len);
    if(!out_buf) {
        fprintf(stderr, "cannot allocate output buffer\n");
        result = SG_ERR_NOMEM;
        goto complete;
    }

    size_t update_moved_len = 0;
    status = CCCryptorUpdate(ref, plaintext, plaintext_len, out_buf, available_len, &update_moved_len);
    if(status != kCCSuccess) {
        result = cc_status_to_result(status);
        goto complete;
    }

    size_t final_moved_len = 0;
    status = CCCryptorFinal(ref, out_buf + update_moved_len, available_len - update_moved_len, &final_moved_len);
    if(status != kCCSuccess) {
        result = cc_status_to_result(status);
        goto complete;
    }

    signal_buffer *output_buffer = signal_buffer_create(out_buf, update_moved_len + final_moved_len);
    if(!output_buffer) {
        result = SG_ERR_NOMEM;
        goto complete;
    }

    *output = output_buffer;

complete:
    if(ref) {
        CCCryptorRelease(ref);
    }
    if(out_buf) {
        free(out_buf);
    }
    return result;
}

int test_decrypt(signal_buffer **output,
        int cipher,
        const uint8_t *key, size_t key_len,
        const uint8_t *iv, size_t iv_len,
        const uint8_t *ciphertext, size_t ciphertext_len,
        void *user_data)
{
    int result = 0;
    uint8_t *out_buf = 0;
    CCCryptorStatus status = kCCSuccess;
    CCCryptorRef ref = 0;

    if(cipher == SG_CIPHER_AES_CBC_PKCS5) {
        status = CCCryptorCreate(kCCDecrypt, kCCAlgorithmAES, kCCOptionPKCS7Padding, key, key_len, iv, &ref);
    }
    else if(cipher == SG_CIPHER_AES_CTR_NOPADDING) {
        status = CCCryptorCreateWithMode(kCCDecrypt, kCCModeCTR, kCCAlgorithmAES, ccNoPadding,
                iv, key, key_len, 0, 0, 0, kCCModeOptionCTR_BE, &ref);
    }
    else {
        status = kCCParamError;
    }
    if(status != kCCSuccess) {
        result = cc_status_to_result(status);
        goto complete;
    }

    out_buf = malloc(sizeof(uint8_t) * ciphertext_len);
    if(!out_buf) {
        fprintf(stderr, "cannot allocate output buffer\n");
        result = SG_ERR_UNKNOWN;
        goto complete;
    }

    size_t update_moved_len = 0;
    status = CCCryptorUpdate(ref, ciphertext, ciphertext_len, out_buf, ciphertext_len, &update_moved_len);
    if(status != kCCSuccess) {
        result = cc_status_to_result(status);
        goto complete;
    }

    size_t final_moved_len = 0;
    status = CCCryptorFinal(ref, out_buf + update_moved_len, ciphertext_len - update_moved_len, &final_moved_len);
    if(status != kCCSuccess) {
        result = cc_status_to_result(status);
        goto complete;
    }

    signal_buffer *output_buffer = signal_buffer_create(out_buf, update_moved_len + final_moved_len);
    if(!output_buffer) {
        result = SG_ERR_NOMEM;
        goto complete;
    }

    *output = output_buffer;

complete:
    if(ref) {
        CCCryptorRelease(ref);
    }
    if(out_buf) {
        free(out_buf);
    }
    return result;
}