1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
#include "test_common.h"
#include <CommonCrypto/CommonDigest.h>
#include <CommonCrypto/CommonHMAC.h>
#include <CommonCrypto/CommonCryptor.h>
#include <stdio.h>
int test_random_generator(uint8_t *data, size_t len, void *user_data)
{
arc4random_buf(data, len);
return 0;
#if 0
/*
* Apple's documentation recommends this method for generating secure
* random numbers. However, it is too slow for the purpose of unit tests.
*/
int result = 0;
FILE *fp = fopen("/dev/random", "r");
if(!fp) {
result = SG_ERR_UNKNOWN;
goto complete;
}
size_t n = fread(data, 1, len, fp);
if(n != len) {
result = SG_ERR_UNKNOWN;
goto complete;
}
complete:
if(fp) {
fclose(fp);
}
return result;
#endif
}
int test_hmac_sha256_init(void **hmac_context, const uint8_t *key, size_t key_len, void *user_data)
{
CCHmacContext *ctx = malloc(sizeof(CCHmacContext));
if(!ctx) {
return SG_ERR_NOMEM;
}
CCHmacInit(ctx, kCCHmacAlgSHA256, key, key_len);
*hmac_context = ctx;
return 0;
}
int test_hmac_sha256_update(void *hmac_context, const uint8_t *data, size_t data_len, void *user_data)
{
CCHmacContext *ctx = hmac_context;
CCHmacUpdate(ctx, data, data_len);
return 0;
}
int test_hmac_sha256_final(void *hmac_context, signal_buffer **output, void *user_data)
{
CCHmacContext *ctx = hmac_context;
signal_buffer *output_buffer = signal_buffer_alloc(CC_SHA256_DIGEST_LENGTH);
if(!output_buffer) {
return SG_ERR_NOMEM;
}
CCHmacFinal(ctx, signal_buffer_data(output_buffer));
*output = output_buffer;
return 0;
}
void test_hmac_sha256_cleanup(void *hmac_context, void *user_data)
{
if(hmac_context) {
CCHmacContext *ctx = hmac_context;
free(ctx);
}
}
int test_sha512_digest_init(void **digest_context, void *user_data)
{
int result = 0;
CC_SHA512_CTX *ctx = malloc(sizeof(CC_SHA512_CTX));
if(!ctx) {
result = SG_ERR_NOMEM;
goto complete;
}
result = CC_SHA512_Init(ctx);
if(result != 1) {
result = SG_ERR_UNKNOWN;
goto complete;
}
complete:
if(result < 0) {
if(ctx) {
free(ctx);
}
}
else {
*digest_context = ctx;
}
return result;
}
int test_sha512_digest_update(void *digest_context, const uint8_t *data, size_t data_len, void *user_data)
{
CC_SHA512_CTX *ctx = digest_context;
int result = CC_SHA512_Update(ctx, data, data_len);
return (result == 1) ? SG_SUCCESS : SG_ERR_UNKNOWN;
}
int test_sha512_digest_final(void *digest_context, signal_buffer **output, void *user_data)
{
int result = 0;
unsigned char md[CC_SHA512_DIGEST_LENGTH];
CC_SHA512_CTX *ctx = digest_context;
result = CC_SHA512_Final(md, ctx);
if(result == 1) {
result = SG_SUCCESS;
}
else {
result = SG_ERR_UNKNOWN;
goto complete;
}
result = CC_SHA512_Init(ctx);
if(result == 1) {
result = SG_SUCCESS;
}
else {
result = SG_ERR_UNKNOWN;
goto complete;
}
signal_buffer *output_buffer = signal_buffer_create(md, CC_SHA512_DIGEST_LENGTH);
if(!output_buffer) {
result = SG_ERR_NOMEM;
goto complete;
}
*output = output_buffer;
complete:
return result;
}
void test_sha512_digest_cleanup(void *digest_context, void *user_data)
{
if(digest_context) {
CC_SHA512_CTX *ctx = digest_context;
free(ctx);
}
}
int cc_status_to_result(CCCryptorStatus status)
{
switch(status) {
case kCCSuccess:
return SG_SUCCESS;
case kCCParamError:
case kCCBufferTooSmall:
return SG_ERR_INVAL;
case kCCMemoryFailure:
return SG_ERR_NOMEM;
case kCCAlignmentError:
case kCCDecodeError:
case kCCUnimplemented:
case kCCOverflow:
case kCCRNGFailure:
case kCCUnspecifiedError:
case kCCCallSequenceError:
default:
return SG_ERR_UNKNOWN;
}
}
int test_encrypt(signal_buffer **output,
int cipher,
const uint8_t *key, size_t key_len,
const uint8_t *iv, size_t iv_len,
const uint8_t *plaintext, size_t plaintext_len,
void *user_data)
{
int result = 0;
uint8_t *out_buf = 0;
CCCryptorStatus status = kCCSuccess;
CCCryptorRef ref = 0;
if(cipher == SG_CIPHER_AES_CBC_PKCS5) {
status = CCCryptorCreate(kCCEncrypt, kCCAlgorithmAES, kCCOptionPKCS7Padding, key, key_len, iv, &ref);
}
else if(cipher == SG_CIPHER_AES_CTR_NOPADDING) {
status = CCCryptorCreateWithMode(kCCEncrypt, kCCModeCTR, kCCAlgorithmAES, ccNoPadding,
iv, key, key_len, 0, 0, 0, kCCModeOptionCTR_BE, &ref);
}
else {
status = kCCParamError;
}
if(status != kCCSuccess) {
result = cc_status_to_result(status);
goto complete;
}
size_t available_len = CCCryptorGetOutputLength(ref, plaintext_len, 1);
out_buf = malloc(available_len);
if(!out_buf) {
fprintf(stderr, "cannot allocate output buffer\n");
result = SG_ERR_NOMEM;
goto complete;
}
size_t update_moved_len = 0;
status = CCCryptorUpdate(ref, plaintext, plaintext_len, out_buf, available_len, &update_moved_len);
if(status != kCCSuccess) {
result = cc_status_to_result(status);
goto complete;
}
size_t final_moved_len = 0;
status = CCCryptorFinal(ref, out_buf + update_moved_len, available_len - update_moved_len, &final_moved_len);
if(status != kCCSuccess) {
result = cc_status_to_result(status);
goto complete;
}
signal_buffer *output_buffer = signal_buffer_create(out_buf, update_moved_len + final_moved_len);
if(!output_buffer) {
result = SG_ERR_NOMEM;
goto complete;
}
*output = output_buffer;
complete:
if(ref) {
CCCryptorRelease(ref);
}
if(out_buf) {
free(out_buf);
}
return result;
}
int test_decrypt(signal_buffer **output,
int cipher,
const uint8_t *key, size_t key_len,
const uint8_t *iv, size_t iv_len,
const uint8_t *ciphertext, size_t ciphertext_len,
void *user_data)
{
int result = 0;
uint8_t *out_buf = 0;
CCCryptorStatus status = kCCSuccess;
CCCryptorRef ref = 0;
if(cipher == SG_CIPHER_AES_CBC_PKCS5) {
status = CCCryptorCreate(kCCDecrypt, kCCAlgorithmAES, kCCOptionPKCS7Padding, key, key_len, iv, &ref);
}
else if(cipher == SG_CIPHER_AES_CTR_NOPADDING) {
status = CCCryptorCreateWithMode(kCCDecrypt, kCCModeCTR, kCCAlgorithmAES, ccNoPadding,
iv, key, key_len, 0, 0, 0, kCCModeOptionCTR_BE, &ref);
}
else {
status = kCCParamError;
}
if(status != kCCSuccess) {
result = cc_status_to_result(status);
goto complete;
}
out_buf = malloc(sizeof(uint8_t) * ciphertext_len);
if(!out_buf) {
fprintf(stderr, "cannot allocate output buffer\n");
result = SG_ERR_UNKNOWN;
goto complete;
}
size_t update_moved_len = 0;
status = CCCryptorUpdate(ref, ciphertext, ciphertext_len, out_buf, ciphertext_len, &update_moved_len);
if(status != kCCSuccess) {
result = cc_status_to_result(status);
goto complete;
}
size_t final_moved_len = 0;
status = CCCryptorFinal(ref, out_buf + update_moved_len, ciphertext_len - update_moved_len, &final_moved_len);
if(status != kCCSuccess) {
result = cc_status_to_result(status);
goto complete;
}
signal_buffer *output_buffer = signal_buffer_create(out_buf, update_moved_len + final_moved_len);
if(!output_buffer) {
result = SG_ERR_NOMEM;
goto complete;
}
*output = output_buffer;
complete:
if(ref) {
CCCryptorRelease(ref);
}
if(out_buf) {
free(out_buf);
}
return result;
}
|