1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2018 Steve R <steversig@virginmedia.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
bitvals = ('0', '1', 'f', 'U')
def decode_bit(edges):
# Datasheet says long pulse is 3 times short pulse.
lmin = 2 # long min multiplier
lmax = 5 # long max multiplier
eqmin = 0.5 # equal min multiplier
eqmax = 1.5 # equal max multiplier
if ( # 0 -___-___
(edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
(edges[2] >= edges[0] * eqmin and edges[2] <= edges[0] * eqmax) and
(edges[3] >= edges[0] * lmin and edges[3] <= edges[0] * lmax)):
return '0'
elif ( # 1 ---_---_
(edges[0] >= edges[1] * lmin and edges[0] <= edges[1] * lmax) and
(edges[0] >= edges[2] * eqmin and edges[0] <= edges[2] * eqmax) and
(edges[0] >= edges[3] * lmin and edges[0] <= edges[3] * lmax)):
return '1'
elif ( # float ---_-___
(edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
(edges[2] >= edges[0] * lmin and edges[2] <= edges[0]* lmax) and
(edges[3] >= edges[0] * eqmin and edges[3] <= edges[0] * eqmax)):
return 'f'
else:
return 'U'
def pinlabels(bit_count):
if bit_count <= 6:
return 'A%i' % (bit_count - 1)
else:
return 'A%i/D%i' % (bit_count - 1, 12 - bit_count)
def decode_model(model, bits):
if model == 'maplin_l95ar':
address = 'Addr' # Address pins A0 to A5
for i in range(0, 6):
address += ' %i:' % (i + 1) + ('on' if bits[i][0] == '0' else 'off')
button = 'Button'
# Button pins A6/D5 to A11/D0
if bits[6][0] == '0' and bits[11][0] == '0':
button += ' A ON/OFF'
elif bits[7][0] == '0' and bits[11][0] == '0':
button += ' B ON/OFF'
elif bits[9][0] == '0' and bits[11][0] == '0':
button += ' C ON/OFF'
elif bits[8][0] == '0' and bits[11][0] == '0':
button += ' D ON/OFF'
else:
button += ' Unknown'
return ['%s' % address, bits[0][1], bits[5][2], \
'%s' % button, bits[6][1], bits[11][2]]
class Decoder(srd.Decoder):
api_version = 3
id = 'rc_encode'
name = 'RC encode'
longname = 'Remote control encoder'
desc = 'PT2262/HX2262/SC5262 remote control encoder protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['IC', 'IR']
channels = (
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
annotations = (
('bit-0', 'Bit 0'),
('bit-1', 'Bit 1'),
('bit-f', 'Bit f'),
('bit-U', 'Bit U'),
('bit-sync', 'Bit sync'),
('pin', 'Pin'),
('code-word-addr', 'Code word address'),
('code-word-data', 'Code word data'),
)
annotation_rows = (
('bits', 'Bits', (0, 1, 2, 3, 4)),
('pins', 'Pins', (5,)),
('code-words', 'Code words', (6, 7)),
)
options = (
{'id': 'remote', 'desc': 'Remote', 'default': 'none',
'values': ('none', 'maplin_l95ar')},
)
def __init__(self):
self.reset()
def reset(self):
self.samplenumber_last = None
self.pulses = []
self.bits = []
self.labels = []
self.bit_count = 0
self.ss = None
self.es = None
self.state = 'IDLE'
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.model = self.options['remote']
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def decode(self):
while True:
pin = self.wait({0: 'e'})
self.state = 'DECODING'
if not self.samplenumber_last: # Set counters to start of signal.
self.samplenumber_last = self.samplenum
self.ss = self.samplenum
continue
if self.bit_count < 12: # Decode A0 to A11.
self.bit_count += 1
for i in range(0, 4): # Get four pulses for each bit.
if i > 0:
pin = self.wait({0: 'e'}) # Get next 3 edges.
samples = self.samplenum - self.samplenumber_last
self.pulses.append(samples) # Save the pulse width.
self.samplenumber_last = self.samplenum
self.es = self.samplenum
self.bits.append([decode_bit(self.pulses), self.ss,
self.es]) # Save states and times.
idx = bitvals.index(decode_bit(self.pulses))
self.putx([idx, [decode_bit(self.pulses)]]) # Write decoded bit.
self.putx([5, [pinlabels(self.bit_count)]]) # Write pin labels.
self.pulses = []
self.ss = self.samplenum
else:
if self.model != 'none':
self.labels = decode_model(self.model, self.bits)
self.put(self.labels[1], self.labels[2], self.out_ann,
[6, [self.labels[0]]]) # Write model decode.
self.put(self.labels[4], self.labels[5], self.out_ann,
[7, [self.labels[3]]]) # Write model decode.
samples = self.samplenum - self.samplenumber_last
pin = self.wait({'skip': 8 * samples}) # Wait for end of sync bit.
self.es = self.samplenum
self.putx([4, ['Sync']]) # Write sync label.
self.reset() # Reset and wait for next set of pulses.
self.state = 'DECODE_TIMEOUT'
if not self.state == 'DECODE_TIMEOUT':
self.samplenumber_last = self.samplenum
|