1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/*
* Copyright 2013, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.jf.util;
import java.text.DecimalFormat;
public class NumberUtils {
private static final int canonicalFloatNaN = Float.floatToRawIntBits(Float.NaN);
private static final int maxFloat = Float.floatToRawIntBits(Float.MAX_VALUE);
private static final int piFloat = Float.floatToRawIntBits((float)Math.PI);
private static final int eFloat = Float.floatToRawIntBits((float)Math.E);
private static final long canonicalDoubleNaN = Double.doubleToRawLongBits(Double.NaN);
private static final long maxDouble = Double.doubleToLongBits(Double.MAX_VALUE);
private static final long piDouble = Double.doubleToLongBits(Math.PI);
private static final long eDouble = Double.doubleToLongBits(Math.E);
private static final DecimalFormat format = new DecimalFormat("0.####################E0");
public static boolean isLikelyFloat(int value) {
// Check for some common named float values
// We don't check for Float.MIN_VALUE, which has an integer representation of 1
if (value == canonicalFloatNaN ||
value == maxFloat ||
value == piFloat ||
value == eFloat) {
return true;
}
// Check for some named integer values
if (value == Integer.MAX_VALUE || value == Integer.MIN_VALUE) {
return false;
}
// Check for likely resource id
int packageId = value >> 24;
int resourceType = value >> 16 & 0xff;
int resourceId = value & 0xffff;
if ((packageId == 0x7f || packageId == 1) && resourceType < 0x1f && resourceId < 0xfff) {
return false;
}
// a non-canocical NaN is more likely to be an integer
float floatValue = Float.intBitsToFloat(value);
if (Float.isNaN(floatValue)) {
return false;
}
// Otherwise, whichever has a shorter scientific notation representation is more likely.
// Integer wins the tie
String asInt = format.format(value);
String asFloat = format.format(floatValue);
// try to strip off any small imprecision near the end of the mantissa
int decimalPoint = asFloat.indexOf('.');
int exponent = asFloat.indexOf("E");
int zeros = asFloat.indexOf("000");
if (zeros > decimalPoint && zeros < exponent) {
asFloat = asFloat.substring(0, zeros) + asFloat.substring(exponent);
} else {
int nines = asFloat.indexOf("999");
if (nines > decimalPoint && nines < exponent) {
asFloat = asFloat.substring(0, nines) + asFloat.substring(exponent);
}
}
return asFloat.length() < asInt.length();
}
public static boolean isLikelyDouble(long value) {
// Check for some common named double values
// We don't check for Double.MIN_VALUE, which has a long representation of 1
if (value == canonicalDoubleNaN ||
value == maxDouble ||
value == piDouble ||
value == eDouble) {
return true;
}
// Check for some named long values
if (value == Long.MAX_VALUE || value == Long.MIN_VALUE) {
return false;
}
// a non-canocical NaN is more likely to be an long
double doubleValue = Double.longBitsToDouble(value);
if (Double.isNaN(doubleValue)) {
return false;
}
// Otherwise, whichever has a shorter scientific notation representation is more likely.
// Long wins the tie
String asLong = format.format(value);
String asDouble = format.format(doubleValue);
// try to strip off any small imprecision near the end of the mantissa
int decimalPoint = asDouble.indexOf('.');
int exponent = asDouble.indexOf("E");
int zeros = asDouble.indexOf("000");
if (zeros > decimalPoint && zeros < exponent) {
asDouble = asDouble.substring(0, zeros) + asDouble.substring(exponent);
} else {
int nines = asDouble.indexOf("999");
if (nines > decimalPoint && nines < exponent) {
asDouble = asDouble.substring(0, nines) + asDouble.substring(exponent);
}
}
return asDouble.length() < asLong.length();
}
}
|