Notes on CMOS Access
To access a CMOS location, the CMOS Index Register is first loaded with the address (or offset) of CMOS location and the data is then read from or written to the CMOS Data Register. Some chipsets may require additional steps (e.g. switching to the correct CMOS bank first via a different pair of index/data registers) before accessing a CMOS location.
Data access via the CMOS index/data register pair needs to consider the following issues under the multi-thread, multi-processor OS environment:

· How to ensure that the requested CMOS location is accessed?

· How to ensure that data read or written is correct?
· How to ensure that the current CMOS access does not affect other threads?

General Purpose CMOS Access Routines

To address the above questions, the general purpose CMOS access routines need to:
· preserve the current interrupt status (maskable and non-maskable)

· preserve the contents of the CMOS index register

· provide separate APIs for User mode and Kernel mode

· consider system integrity, e.g. when the access is interrupted by the System Management Interrupt (SMI)
Preserve Interrupt Status

The current status of maskable interrupts and non-maskable interrupts (NMIs) should be preserved by the access routines. For example, setting bit 7 of the CMOS Index Register (0x70) will disable the NMI interrupts. Clearing bit 7 of the CMOS Index Register will enable the NMI interrupts. If NMI interrupts are disabled under Windows, then Windows will no longer able to generate Blue Screen via NMI. The CMOS access routines must ensure that this will not happen.

Preserve CMOS Index
It’s always a good practice for the access routine to preserve the shared system resource – the CMOS Index Register. However, the CMOS Index Register is not always readable (i.e. it’s write-only). For the Intel chipsets, the CMOS Index Register is readable only when the South Bridge is set to the alternate mode. When the CMOS Index Register is write-only, a CMOS read will always return a value of 0xFF.

If the access routine cannot read the CMOS Index Register, it cannot preserve the CMOS Index Register. This means that incorrect CMOS data could be read from or written to an unexpected CMOS location.
This presents a challenging synchronization issue to the CMOS access routine.
Example:

Thread #1 modifies CMOS location A while Thread #2 reads CMOS location B.
After Thread #1 sets the Index Register to A, its time slice is up so it gets suspended.
Thread #2 starts execution and sets the Index Register to B. It reads the Data Register then quits (the Index Register is not restored since it cannot).
When Thread #1 resumes, it reads the data from the CMOS location B instead of location A. It modifies the data then writes the modified data to CMOS location B instead of location A.

Results: Thread #1 corrupts CMOS location B whereas Thread #2 gets wrong data.

User Mode vs Kernel Mode

The User Mode access routine may use the EnterCriticalSection and LeaveCriticalSection APIs to gain exclusive access, via the spin-lock protection, to a CMOS location. However, this is OS dependent.

The Kernel Mode access routine should use the spin-lock protected Kernel Mode API to access a CMOS location. For example, Windows gets interrupted by the CMOS Real-Time Clock (RTC) every 15.625 ms. The Windows’ RTC interrupt handler reads the CMOS location 0x0C twice to clear all pending RTC interrupts. Any unprotected CMOS access runs the risk of interrupting the RTC interrupt handler and disables all future RTC interrupts which would leads Windows hang. This has happened on the Discovery. There is a workaround for this: the access routine reads the CMOS location 0x0C before it exits.
Example:
Kernel Thread #1 tries to read CMOS location A while the Kernel Real-Time Clock (RTC) Interrupt handler is servicing the RTC interrupts

The Kernel RTC interrupt handler reads CMOS location 0x0C to clear all RTC interrupts. However, the RTC interrupt handler is interrupted right after it changes the CMOS Index Register to 0x0C by Thread #1. Thread #1 uses a direct I/O to read CMOS location A. The RTC interrupt handler resumes, after Thread #1 reads CMOS location A, and reads CMOS location A instead of 0x0C.
Results: The Kernel RTC interrupt handler fails to clear RTC interrupts thus no more RTC interrupts will occur. All program scheduling that depends on the RTC interrupts will cease to operate.
Consistency with the System Management Interrupt (SMI) Handler

Any modification to a CMOS location via a user application that is used for decision making inside the SMI handler could result in unexpected system behavior.
