1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
|
/*
** Copyright (C) 1999-2014 Erik de Castro Lopo <erikd@mega-nerd.com>
** Copyright (C) 2017 Arthur Taylor <art@ified.ca>
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU Lesser General Public License as published by
** the Free Software Foundation; either version 2.1 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU Lesser General Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
** This is a Natural MicroSystems ADPCM encoder/decoder. It converts 14 bit linear
** PCM to and from either a 2, 3, or 4 bit ADPCM. NMS-ADPCM does not have appeared
** to have ever been publicly documented, and appears to have debuted in the early
** 90s in the Natural Access suite of PC-based telephony products. Raw NMS ADPCM
** files usually have a .vce extension, although this does not encode what bitrate
** is used.
**
** NMS-ADPCM is an 'optimised variation' of the ITU G.726 ADPCM scheme. The dominant
** variation is that it removes the tone (modem) operation mode, and it's associated
** voice/modem transition detection. This simplifies the computation of the step
** size multiplier, as all operations on it remain in a log domain.
*/
#include "sfconfig.h"
#include <math.h>
#include "sndfile.h"
#include "sfendian.h"
#include "common.h"
#define NMS_SAMPLES_PER_BLOCK 160
#define NMS_BLOCK_SHORTS_32 41
#define NMS_BLOCK_SHORTS_24 31
#define NMS_BLOCK_SHORTS_16 21
/* Variable names from ITU G.726 spec */
struct nms_adpcm_state
{ /* Log of the step size multiplier. Operated on by codewords. */
short yl ;
/* Quantizer step size multiplier. Generated from yl. */
short y ;
/* Coefficents of the pole predictor */
short a [2] ;
/* Coefficents of the zero predictor */
short b [6] ;
/* Previous quantized deltas (multiplied by 2^14) */
short d_q [7] ;
/* d_q [x] + s_ez [x], used by the pole-predictor for signs only. */
short p [3] ;
/* Previous reconstructed signal values. */
short s_r [2] ;
/* Zero predictor components of the signal estimate. */
short s_ez ;
/* Signal estimate, (including s_ez). */
short s_e ;
/* The most recent codeword (enc:generated, dec:inputted) */
char Ik ;
char parity ;
/*
** Offset into code tables for the bitrate.
** 2-bit words: +0
** 3-bit words: +8
** 4-bit words: +16
*/
int t_off ;
} ;
enum nms_enc_type
{ NMS16,
NMS24,
NMS32
} ;
typedef struct
{ struct nms_adpcm_state state ;
/* The encoding type */
enum nms_enc_type type ;
int shortsperblock ;
int blocks_total ;
int block_curr, sample_curr ;
unsigned short block [NMS_BLOCK_SHORTS_32] ;
short samples [NMS_SAMPLES_PER_BLOCK] ;
} NMS_ADPCM_PRIVATE ;
/* Pre-computed exponential interval used in the antilog approximation. */
static unsigned short table_expn [] =
{ 0x4000, 0x4167, 0x42d5, 0x444c, 0x45cb, 0x4752, 0x48e2, 0x4a7a,
0x4c1b, 0x4dc7, 0x4f7a, 0x5138, 0x52ff, 0x54d1, 0x56ac, 0x5892,
0x5a82, 0x5c7e, 0x5e84, 0x6096, 0x62b4, 0x64dd, 0x6712, 0x6954,
0x6ba2, 0x6dfe, 0x7066, 0x72dc, 0x7560, 0x77f2, 0x7a93, 0x7d42,
} ;
/* Table mapping codewords to scale factor deltas. */
static short table_scale_factor_step [] =
{ 0x0, 0x0, 0x0, 0x0, 0x4b0, 0x0, 0x0, 0x0, /* 2-bit */
-0x3c, 0x0, 0x90, 0x0, 0x2ee, 0x0, 0x898, 0x0, /* 3-bit */
-0x30, 0x12, 0x6b, 0xc8, 0x188, 0x2e0, 0x551, 0x1150, /* 4-bit */
} ;
/* Table mapping codewords to quantized delta interval steps. */
static unsigned short table_step [] =
{ 0x73F, 0, 0, 0, 0x1829, 0, 0, 0, /* 2-bit */
0x3EB, 0, 0xC18, 0, 0x1581, 0, 0x226E, 0, /* 3-bit */
0x20C, 0x635, 0xA83, 0xF12, 0x1418, 0x19E3, 0x211A, 0x2BBA, /* 4-bit */
} ;
/* Binary search lookup table for quantizing using table_step. */
static short table_step_search [] =
{ 0, 0x1F6D, 0, -0x1F6D, 0, 0, 0, 0, /* 2-bit */
0x1008, 0x1192, 0, -0x219A, 0x1656, -0x1656, 0, 0, /* 3-bit */
0x872, 0x1277, -0x8E6, -0x232B, 0xD06, -0x17D7, -0x11D3, 0, /* 4-bit */
} ;
/*============================================================================================
** Static functions.
*/
static void nms_adpcm_update (struct nms_adpcm_state *s) ;
static void nms_adpcm_codec_init (struct nms_adpcm_state *s, enum nms_enc_type type) ;
static int16_t nms_adpcm_reconstruct_sample (struct nms_adpcm_state *s, uint8_t I) ;
static uint8_t nms_adpcm_encode_sample (struct nms_adpcm_state *s, int16_t sl) ;
static int16_t nms_adpcm_decode_sample (struct nms_adpcm_state *s, uint8_t code) ;
static void nms_adpcm_block_pack_16 (const int16_t codewords [], uint16_t block [], int16_t rms) ;
static void nms_adpcm_block_pack_24 (const int16_t codewords [], uint16_t block [], int16_t rms) ;
static void nms_adpcm_block_pack_32 (const int16_t codewords [], uint16_t block [], int16_t rms) ;
static void nms_adpcm_block_unpack_16 (const uint16_t block [], int16_t codewords [], int16_t *rms) ;
static void nms_adpcm_block_unpack_24 (const uint16_t block [], int16_t codewords [], int16_t *rms) ;
static void nms_adpcm_block_unpack_32 (const uint16_t block [], int16_t codewords [], int16_t *rms) ;
static int nms_adpcm_decode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, uint16_t block [], int16_t samples []) ;
static int nms_adpcm_encode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, int16_t samples [], uint16_t block []) ;
static sf_count_t nms_adpcm_read_s (SF_PRIVATE *psf, short *ptr, sf_count_t len) ;
static sf_count_t nms_adpcm_read_i (SF_PRIVATE *psf, int *ptr, sf_count_t len) ;
static sf_count_t nms_adpcm_read_f (SF_PRIVATE *psf, float *ptr, sf_count_t len) ;
static sf_count_t nms_adpcm_read_d (SF_PRIVATE *psf, double *ptr, sf_count_t len) ;
static sf_count_t nms_adpcm_write_s (SF_PRIVATE *psf, const short *ptr, sf_count_t len) ;
static sf_count_t nms_adpcm_write_i (SF_PRIVATE *psf, const int *ptr, sf_count_t len) ;
static sf_count_t nms_adpcm_write_f (SF_PRIVATE *psf, const float *ptr, sf_count_t len) ;
static sf_count_t nms_adpcm_write_d (SF_PRIVATE *psf, const double *ptr, sf_count_t len) ;
static int nms_adpcm_close (SF_PRIVATE *psf) ;
static sf_count_t nms_adpcm_seek (SF_PRIVATE *psf, int mode, sf_count_t offset) ;
/*
** An exponential function (antilog) approximation.
**
** Maps [1,20480] to [1,1024] in an exponential relationship. This is
** approximately ret = b^exp where b = e^(ln(1024)/ln(20480)) ~= 1.0003385
*/
static inline short
nms_adpcm_antilog (short exp)
{ int_fast32_t r ;
r = 0x1000 ;
r += (((int_fast32_t) (exp & 0x3f) * 0x166b) >> 12) ;
r *= table_expn [(exp & 0x7c0) >> 6] ;
r >>= (26 - (exp >> 11)) ;
return (short) r ;
} /* nms_adpcm_antilog */
static void
nms_adpcm_update (struct nms_adpcm_state *s)
{ /* Variable names from ITU G.726 spec */
short a1ul, fa1 ;
int_fast32_t se ;
int i ;
/* Decay and Modify the scale factor in the log domain based on the codeword. */
s->yl = ((s->yl *0xf8) >> 8) + table_scale_factor_step [s->t_off + (s->Ik & 7)] ;
if (s->yl < 2171)
s->yl = 2171 ;
else if (s->yl > 20480)
s->yl = 20480 ;
s->y = nms_adpcm_antilog (s->yl) ;
/* Update the zero predictor coefficents. */
for (i = 0 ; i < 6 ; i++)
{ s->b [i] = (s->b [i] * 0xff) >> 8 ;
if ((s->d_q [0] ^ s->d_q [i + 1]) >= 0)
s->b [i] += 128 ;
else
s->b [i] -= 128 ;
}
/* Update the pole predictor coefficents. */
fa1 = s->a [0] >> 5 ;
if (fa1 < -256)
fa1 = -256 ;
else if (fa1 > 256)
fa1 = 256 ;
s->a [0] = (s->a [0] * 0xff) >> 8 ;
if (s->p [0] != 0 && s->p [1] != 0 && ((s->p [0] ^ s->p [1]) < 0))
s->a [0] -= 192 ;
else
{ s->a [0] += 192 ;
fa1 = -fa1 ;
}
s->a [1] = fa1 + ((s->a [1] * 0xfe) >> 8) ;
if (s->p [0] != 0 && s->p [2] != 0 && ((s->p [0] ^ s->p [2]) < 0))
s->a [1] -= 128 ;
else
s->a [1] += 128 ;
/* Stability constraints. */
if (s->a [1] < -12288)
s->a [1] = -12288 ;
else if (s->a [1] > 12288)
s->a [1] = 12288 ;
a1ul = 15360 - s->a [1] ;
if (s->a [0] >= a1ul)
s->a [0] = a1ul ;
else
{ a1ul = -a1ul ;
if (s->a [0] < a1ul)
s->a [0] = a1ul ;
} ;
/* Compute the zero predictor estimate and rotate past deltas. */
se = 0 ;
for (i = 5 ; i >= 0 ; i--)
{ se += (int_fast32_t) s->d_q [i] * s->b [i] ;
s->d_q [i + 1] = s->d_q [i] ;
} ;
s->s_ez = se >> 14 ;
/* Complete the signal estimate. */
se += (int_fast32_t) s->a [0] * s->s_r [0] ;
se += (int_fast32_t) s->a [1] * s->s_r [1] ;
s->s_e = se >> 14 ;
/* Rotate members to prepare for next iteration. */
s->s_r [1] = s->s_r [0] ;
s->p [2] = s->p [1] ;
s->p [1] = s->p [0] ;
} /* nms_adpcm_update */
static int16_t
nms_adpcm_reconstruct_sample (struct nms_adpcm_state *s, uint8_t I)
{ /* Variable names from ITU G.726 spec */
int_fast32_t dqx ;
/*
** The ordering of the 12-bit right-shift is a precision loss. It agrees
** with the output of a 16-bit NMSVCE.DLL, but disagrees with the output
** of a CG6565 board.
*/
/* Look up the delta, scale and sign it. */
dqx = table_step [s->t_off + (I & 7)] * s->y ;
if (I & 8)
dqx = -dqx ;
/* Take from delta scale to actual scale. */
dqx >>= 12 ;
/* Set variables used as input for the next predictor update. */
s->d_q [0] = dqx ;
s->s_r [0] = s->s_e + dqx ;
s->Ik = I & 0xf ;
s->p [0] = s->s_ez + dqx ;
return s->s_r [0] ;
} /* nms_adpcm_reconstruct_sample */
static void
nms_adpcm_codec_init (struct nms_adpcm_state *s, enum nms_enc_type type)
{ memset (s, 0, sizeof (struct nms_adpcm_state)) ;
s->t_off = (type == NMS32) ? 16 : (type == NMS24) ? 8 : 0 ;
} /* nms_adpcm_codec_init */
/*
** nms_adpcm_encode_sample()
**
** Encode a linear 16-bit pcm sample into a 2, 3, or 4 bit NMS-ADPCM codeword
** using and updating the predictor state.
*/
static uint8_t
nms_adpcm_encode_sample (struct nms_adpcm_state *s, int16_t sl)
{ /* Variable names from ITU G.726 spec */
int_fast32_t d ;
uint8_t I ;
/* Down scale the sample from 16 => ~14 bits. */
sl = ((int_fast32_t) sl * 0x1fdf) / 0x7fff ;
/* Compute estimate, and delta from actual value */
nms_adpcm_update (s) ;
d = sl - s->s_e ;
/*
** Vary the input signal. Not sure why. It agrees with NMSVCE.DLL and
** a CG6565 board.
*/
if (s->parity ^= 1)
d -= 2 ;
/* Encode the delta signed-ness (Codeword bit 4) */
if (d < 0)
{ d = -d ;
I = 8 ;
}
else
I = 0 ;
/* Increase magnitude to be in the range of the delta steps */
d <<= 13 ;
/* Quantize the delta using a binary search. */
d += table_step_search [s->t_off + 3] * s->y ;
/* Codeword bit 3 */
if (d >= 0)
{ d += table_step_search [s->t_off + 5] * s->y ;
/* Codeword bit 2 */
if (d >= 0)
{ d += table_step_search [s->t_off + 6] * s->y ;
/* Codeword bit 1 */
if (d >= 0)
I |= 7 ;
else
I |= 6 ;
}
else
{ d += table_step_search [s->t_off + 4] * s->y ;
/* Codeword bit 1 */
if (d >= 0)
I |= 5 ;
else
I |= 4 ;
} ;
}
else {
d += table_step_search [s->t_off + 1] * s->y ;
/* Codeword bit 2 */
if (d >= 0)
{ d += table_step_search [s->t_off + 2] * s->y ;
/* Codeword bit 1 */
if (d >= 0)
I |= 3 ;
else
I |= 2 ;
}
else {
d += table_step_search [s->t_off + 0] * s->y ;
/* Codeword bit 1 */
if (d >= 0)
I |= 1 ;
else
I |= 0 ;
} ;
} ;
/* What's left in d is actually our quantizer noise. */
/* Reduce the codeword size for the bitrate accordingly. */
if (s->t_off == 8)
I &= 0xe ;
else if (s->t_off == 0)
I &= 0xc ;
/* Call reconstruct for side effects preparing for the next update. */
nms_adpcm_reconstruct_sample (s, I) ;
return I ;
} /* nms_adpcm_encode_sample */
/*
** nms_adpcm_decode_sample()
**
** Given a 2,3 or 4-bit NMS-ADPCM codeword, decode the next 16-bit linear PCM
** sample using and updating the predictor state.
*/
static int16_t
nms_adpcm_decode_sample (struct nms_adpcm_state *s, uint8_t I)
{ int_fast32_t sl ;
nms_adpcm_update (s) ;
sl = nms_adpcm_reconstruct_sample (s, I) ;
/* Clamp to [-0x1fdf, 0x1fdf] (just under 14 bits resolution) */
if (sl < -0x1fdf)
sl = -0x1fdf ;
else if (sl > 0x1fdf)
sl = 0x1fdf ;
/* Expand from 14 to 16 bits */
sl = (sl * 0x7fff) / 0x1fdf ;
return (int16_t) sl ;
} /* nms_adpcm_decode_sample */
/**
** NMS ADPCM Codeword packing scheme.
**
** The serialized form of NMS-ADPCM operates on blocks of 160 mono samples
** (20ms at 8000Hz.) Blocks are 42, 62 and 82 bytes in size for the 2, 3, and
** 4 bit codeword sizes respectively. The data is treated as an array of
** little-endian 2-byte shorts, and the data is packed into the first 20, 30
** or 40 shorts. The last short represents the block's root-mean-square
** average. This is apparently an optimization so that energy/silence
** detection processes can avoid decoding a block.
**
** All codewords are nibbles, with the least significant bits dropped as
** required for the 3 and 2 bit codeword sizes.
**
** Nibbles are packed into shorts in order of most significant to least. The
** 4-bit scheme is trivial. The three bit scheme reconstructs a fourth sample
** from the leftover bits of the proceeding three samples. The 2-bit scheme
** uses a two-pass, left two bit shift.
*/
/*
** Reads 21 shorts from block, unpacks 160 codewords of 2-bits each, writing
** each to its sequential array index of codewords. If rms is non-null, the
** read block rms is copied to its location.
*/
static void
nms_adpcm_block_unpack_16 (const uint16_t block [], int16_t codewords [], int16_t *rms)
{ int k ;
uint16_t w = 0 ;
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
{ /*
** k % 8 == [0-3]: Top 2-bits of a nibble
** k % 8 == [4-7]: Bottom 2-bits of a nibble
*/
if ((k & 4) == 0)
w = *(block++) ;
else
w <<= 2 ;
codewords [k++] = (w >> 12) & 0xc ;
codewords [k++] = (w >> 8) & 0xc ;
codewords [k++] = (w >> 4) & 0xc ;
codewords [k++] = w & 0xc ;
} ;
/*
** Every block ends with a short representing a RMS-approximation for the
** block.
**/
if (rms)
*rms = *block ;
} /* nms_adpcm_unpack_16 */
/*
** Reads 31 shorts from block, unpacks 160 codewords of 3-bits each, writing
** each to its sequential array index of codewords. If rms is non-null, the
** read block rms is copied to its location.
*/
static void
nms_adpcm_block_unpack_24 (const uint16_t block [], int16_t codewords [], int16_t *rms)
{ int k ;
uint16_t w = 0, residual = 0 ;
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
{ /*
** k % 16 == [0, 11]: Unpack new nibble, build residual
** k % 16 == [12, 15]: Unpack residual
*/
if ((k & 12) != 12)
{ w = *(block++) ;
residual = (residual << 1) | (w & 0x1111) ;
}
else
{ w = residual << 1 ;
residual = 0 ;
} ;
codewords [k++] = (w >> 12) & 0xe ;
codewords [k++] = (w >> 8) & 0xe ;
codewords [k++] = (w >> 4) & 0xe ;
codewords [k++] = w & 0xe ;
} ;
/*
** Every block ends with a short representing a RMS-approximation for the
** block.
**/
if (rms)
*rms = *block ;
} /* nms_adpcm_unpack_24 */
/*
** Reads 41 shorts from block, unpacks 160 codewords of 4-bits each, writing
** each to its sequential array index of codewords. If rms is non-null, the
** read block rms is copied to its location.
*/
static void
nms_adpcm_block_unpack_32 (const uint16_t block [], int16_t codewords [], int16_t *rms)
{ int k ;
uint16_t w = 0 ;
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
{ w = *(block++) ;
codewords [k++] = (w >> 12) & 0xf ;
codewords [k++] = (w >> 8) & 0xf ;
codewords [k++] = (w >> 4) & 0xf ;
codewords [k++] = w & 0xf ;
} ;
/*
** Every block ends with a short representing a RMS-approximation for the
** block.
**/
if (rms)
*rms = *block ;
} /* nms_adpcm_unpack_32 */
/*
** Reads 160 indicies of codewords for one 2-bit codeword each, packing them
** into 20 shorts of block, and writes the short rms for a total of 42 bytes.
*/
static void
nms_adpcm_block_pack_16 (const int16_t codewords [], uint16_t block [], int16_t rms)
{ int k ;
uint16_t w ;
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
{ w = codewords [k++] << 12 ;
w |= codewords [k++] << 8 ;
w |= codewords [k++] << 4 ;
w |= codewords [k++] ;
w |= codewords [k++] << 10 ;
w |= codewords [k++] << 6 ;
w |= codewords [k++] << 2 ;
w |= codewords [k++] >> 2 ;
*(block++) = w ;
} ;
/* Every block ends with a short representing the blocks RMS */
*block = rms ;
} /* nms_adpcm_pack_16 */
/*
** Reads 160 indicies of codewords for one 3-bit codeword each, packing them
** into 30 shorts of block, and writes the short rms for a total of 62 bytes.
*/
static void
nms_adpcm_block_pack_24 (const int16_t codewords [], uint16_t block [], int16_t rms)
{ int k ;
uint16_t w [3] ;
uint16_t residual ;
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
{ w [0] = codewords [k++] << 12 ;
w [0] |= codewords [k++] << 8 ;
w [0] |= codewords [k++] << 4 ;
w [0] |= codewords [k++] ;
w [1] = codewords [k++] << 12 ;
w [1] |= codewords [k++] << 8 ;
w [1] |= codewords [k++] << 4 ;
w [1] |= codewords [k++] ;
w [2] = codewords [k++] << 12 ;
w [2] |= codewords [k++] << 8 ;
w [2] |= codewords [k++] << 4 ;
w [2] |= codewords [k++] ;
residual = codewords [k++] << 12 ;
residual |= codewords [k++] << 8 ;
residual |= codewords [k++] << 4 ;
residual |= codewords [k++] ;
residual >>= 1 ;
w [2] |= (residual & 0x1111) ;
residual >>= 1 ;
w [1] |= (residual & 0x1111) ;
residual >>= 1 ;
w [0] |= (residual & 0x1111) ;
*(block++) = w [0] ;
*(block++) = w [1] ;
*(block++) = w [2] ;
} ;
/* Every block ends with a short representing the blocks RMS */
*block = rms ;
} /* nms_adpcm_pack_24 */
/*
** Reads 160 indicies of codewords for one 4-bit codeword each, packing them
** into 40 shorts of block, and writes the short rms for a total of 82 bytes.
*/
static void
nms_adpcm_block_pack_32 (const int16_t codewords [], uint16_t block [], int16_t rms)
{ int k ;
uint16_t w ;
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; )
{ w = codewords [k++] << 12 ;
w |= codewords [k++] << 8 ;
w |= codewords [k++] << 4 ;
w |= codewords [k++] ;
*(block++) = w ;
} ;
/* Every block ends with a short representing the blocks RMS */
*block = rms ;
} /*nms_adpcm_block_pack_32 */
static int
nms_adpcm_decode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, uint16_t block [], int16_t samples [])
{ int k ;
switch (pnms->type)
{ case NMS16 :
nms_adpcm_block_unpack_16 (block, samples, NULL) ;
break ;
case NMS24 :
nms_adpcm_block_unpack_24 (block, samples, NULL) ;
break ;
case NMS32 :
nms_adpcm_block_unpack_32 (block, samples, NULL) ;
break ;
default :
psf_log_printf (psf, "*** Error : Unhandled NMS ADPCM type %d.\n", pnms->type) ;
return 0 ;
} ;
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; k++)
samples [k] = nms_adpcm_decode_sample (&pnms->state, samples [k]) ;
return NMS_SAMPLES_PER_BLOCK ;
} /* nms_adpcm_decode_block */
static int
nms_adpcm_encode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, int16_t samples [], uint16_t block [])
{ int k ;
unsigned int rms = 0 ;
/*
** The rms we write is a complete lie. Considering that the various
** other implementations I've tested don't completely agree, that this data
** is usually ignored, and except for some weird offloading of "energy
** detection", so long as we don't write zeros for non-zero data, I don't
** think it really matters.
*/
for (k = 0 ; k < NMS_SAMPLES_PER_BLOCK ; k++)
{ rms += (samples [k] * samples [k]) >> 2 ;
samples [k] = nms_adpcm_encode_sample (&pnms->state, samples [k]) ;
} ;
rms <<= 12 ;
switch (pnms->type)
{ case NMS16 :
nms_adpcm_block_pack_16 (samples, block, rms) ;
break ;
case NMS24 :
nms_adpcm_block_pack_24 (samples, block, rms) ;
break ;
case NMS32 :
nms_adpcm_block_pack_32 (samples, block, rms) ;
break ;
default :
psf_log_printf (psf, "*** Error : Unhandled NMS ADPCM type %d.\n", pnms->type) ;
return 0 ;
} ;
return NMS_SAMPLES_PER_BLOCK ;
} /* nms_adpcm_encode_block */
static int
psf_nms_adpcm_decode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms)
{ int k ;
if ((k = (int) psf_fread (pnms->block, sizeof (short), pnms->shortsperblock, psf)) != pnms->shortsperblock)
{ psf_log_printf (psf, "*** Warning : short read (%d != %d).\n", k, pnms->shortsperblock) ;
memset (pnms->block + (k * sizeof (short)), 0, (pnms->shortsperblock - k) * sizeof (short)) ;
} ;
if (CPU_IS_BIG_ENDIAN)
endswap_short_array ((signed short *) pnms->block, pnms->shortsperblock) ;
nms_adpcm_decode_block (psf, pnms, pnms->block, pnms->samples) ;
return 1 ;
} /* nms_adpcm_decode_block */
static int
nms_adpcm_read_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, short *ptr, int len)
{ int count, indx = 0 ;
while (indx < len)
{ if (pnms->sample_curr >= NMS_SAMPLES_PER_BLOCK)
{ pnms->block_curr ++ ;
pnms->sample_curr = 0 ;
} ;
if (pnms->block_curr > pnms->blocks_total)
{ memset (&(ptr [indx]), 0, (len - indx) * sizeof (short)) ;
return indx ;
} ;
if (pnms->sample_curr == 0)
psf_nms_adpcm_decode_block (psf, pnms) ;
count = NMS_SAMPLES_PER_BLOCK - pnms->sample_curr ;
if (len - indx < count)
count = len - indx ;
memcpy (&(ptr [indx]), &(pnms->samples [pnms->sample_curr]), count * sizeof (short)) ;
indx += count ;
pnms->sample_curr += count ;
} ;
return indx ;
} /* nms_adpcm_read_block */
static sf_count_t
nms_adpcm_read_s (SF_PRIVATE *psf, short *ptr, sf_count_t len)
{ NMS_ADPCM_PRIVATE *pnms ;
int readcount, count ;
sf_count_t total = 0 ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
while (len > 0)
{ readcount = (len > 0x10000000) ? 0x10000000 : (int) len ;
count = nms_adpcm_read_block (psf, pnms, ptr, readcount) ;
total += count ;
len -= count ;
if (count != readcount)
break ;
} ;
return total ;
} /* nms_adpcm_read_s */
static sf_count_t
nms_adpcm_read_i (SF_PRIVATE *psf, int *ptr, sf_count_t len)
{ BUF_UNION ubuf ;
NMS_ADPCM_PRIVATE *pnms ;
short *sptr ;
int k, bufferlen, readcount = 0, count ;
sf_count_t total = 0 ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE *) psf->codec_data ;
sptr = ubuf.sbuf ;
bufferlen = SF_BUFFER_LEN / sizeof (short) ;
while (len > 0)
{ readcount = (len >= bufferlen) ? bufferlen : (int) len ;
count = nms_adpcm_read_block (psf, pnms, sptr, readcount) ;
for (k = 0 ; k < readcount ; k++)
ptr [total + k] = arith_shift_left (sptr [k], 16) ;
total += count ;
len -= readcount ;
if (count != readcount)
break ;
} ;
return total ;
} /* nms_adpcm_read_i */
static sf_count_t
nms_adpcm_read_f (SF_PRIVATE *psf, float *ptr, sf_count_t len)
{ BUF_UNION ubuf ;
NMS_ADPCM_PRIVATE *pnms ;
short *sptr ;
int k, bufferlen, readcount = 0, count ;
sf_count_t total = 0 ;
float normfact ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
normfact = (psf->norm_float == SF_TRUE) ? 1.0 / ((float) 0x8000) : 1.0 ;
sptr = ubuf.sbuf ;
bufferlen = SF_BUFFER_LEN / sizeof (short) ;
while (len > 0)
{ readcount = (len >= bufferlen) ? bufferlen : (int) len ;
count = nms_adpcm_read_block (psf, pnms, sptr, readcount) ;
for (k = 0 ; k < readcount ; k++)
ptr [total + k] = normfact * sptr [k] ;
total += count ;
len -= readcount ;
if (count != readcount)
break ;
} ;
return total ;
} /* nms_adpcm_read_f */
static sf_count_t
nms_adpcm_read_d (SF_PRIVATE *psf, double *ptr, sf_count_t len)
{ BUF_UNION ubuf ;
NMS_ADPCM_PRIVATE *pnms ;
short *sptr ;
int k, bufferlen, readcount = 0, count ;
sf_count_t total = 0 ;
double normfact ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
normfact = (psf->norm_double == SF_TRUE) ? 1.0 / ((double) 0x8000) : 1.0 ;
sptr = ubuf.sbuf ;
bufferlen = SF_BUFFER_LEN / sizeof (short) ;
while (len > 0)
{ readcount = (len >= bufferlen) ? bufferlen : (int) len ;
count = nms_adpcm_read_block (psf, pnms, sptr, readcount) ;
for (k = 0 ; k < readcount ; k++)
ptr [total + k] = normfact * (double) (sptr [k]) ;
total += count ;
len -= readcount ;
if (count != readcount)
break ;
} ;
return total ;
} /* nms_adpcm_read_d */
static int
psf_nms_adpcm_encode_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms)
{ int k ;
/* Encode the samples. */
nms_adpcm_encode_block (psf, pnms, pnms->samples, pnms->block) ;
if (CPU_IS_BIG_ENDIAN)
endswap_short_array ((signed short *) pnms->block, pnms->shortsperblock) ;
/* Write the block to disk. */
if ((k = (int) psf_fwrite (pnms->block, sizeof (short), pnms->shortsperblock, psf)) != pnms->shortsperblock)
psf_log_printf (psf, "*** Warning : short write (%d != %d).\n", k, pnms->shortsperblock) ;
pnms->sample_curr = 0 ;
pnms->block_curr ++ ;
return 1 ;
} /* psf_nms_adpcm_encode_block */
static int
nms_adpcm_write_block (SF_PRIVATE *psf, NMS_ADPCM_PRIVATE *pnms, const short *ptr, int len)
{ int count, total = 0, indx = 0 ;
while (indx < len)
{ count = NMS_SAMPLES_PER_BLOCK - pnms->sample_curr ;
if (count > len - indx)
count = len - indx ;
memcpy (&(pnms->samples [pnms->sample_curr]), &(ptr [indx]), count * sizeof (short)) ;
indx += count ;
pnms->sample_curr += count ;
total = indx ;
if (pnms->sample_curr >= NMS_SAMPLES_PER_BLOCK)
psf_nms_adpcm_encode_block (psf, pnms) ;
} ;
return total ;
} /* nms_adpcm_write_block */
static sf_count_t
nms_adpcm_write_s (SF_PRIVATE *psf, const short *ptr, sf_count_t len)
{ NMS_ADPCM_PRIVATE *pnms ;
int writecount, count ;
sf_count_t total = 0 ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
while (len > 0)
{ writecount = (len > 0x10000000) ? 0x10000000 : (int) len ;
count = nms_adpcm_write_block (psf, pnms, ptr, writecount) ;
total += count ;
len -= count ;
if (count != writecount)
break ;
} ;
return total ;
} /* nms_adpcm_write_s */
static sf_count_t
nms_adpcm_write_i (SF_PRIVATE *psf, const int *ptr, sf_count_t len)
{ BUF_UNION ubuf ;
NMS_ADPCM_PRIVATE *pnms ;
short *sptr ;
int k, bufferlen, writecount = 0, count ;
sf_count_t total = 0 ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
sptr = ubuf.sbuf ;
bufferlen = SF_BUFFER_LEN / sizeof (short) ;
while (len > 0)
{ writecount = (len >= bufferlen) ? bufferlen : (int) len ;
for (k = 0 ; k < writecount ; k++)
sptr [k] = ptr [total + k] >> 16 ;
count = nms_adpcm_write_block (psf, pnms, sptr, writecount) ;
total += count ;
len -= writecount ;
if (count != writecount)
break ;
} ;
return total ;
} /* nms_adpcm_write_i */
static sf_count_t
nms_adpcm_write_f (SF_PRIVATE *psf, const float *ptr, sf_count_t len)
{ BUF_UNION ubuf ;
NMS_ADPCM_PRIVATE *pnms ;
short *sptr ;
int k, bufferlen, writecount = 0, count ;
sf_count_t total = 0 ;
float normfact ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
normfact = (psf->norm_float == SF_TRUE) ? (1.0 * 0x8000) : 1.0 ;
sptr = ubuf.sbuf ;
bufferlen = SF_BUFFER_LEN / sizeof (short) ;
while (len > 0)
{ writecount = (len >= bufferlen) ? bufferlen : (int) len ;
for (k = 0 ; k < writecount ; k++)
sptr [k] = psf_lrintf (normfact * ptr [total + k]) ;
count = nms_adpcm_write_block (psf, pnms, sptr, writecount) ;
total += count ;
len -= writecount ;
if (count != writecount)
break ;
} ;
return total ;
} /* nms_adpcm_write_f */
static sf_count_t
nms_adpcm_write_d (SF_PRIVATE *psf, const double *ptr, sf_count_t len)
{ BUF_UNION ubuf ;
NMS_ADPCM_PRIVATE *pnms ;
short *sptr ;
int k, bufferlen, writecount = 0, count ;
sf_count_t total = 0 ;
double normfact ;
if (psf->codec_data == NULL)
return 0 ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
normfact = (psf->norm_double == SF_TRUE) ? (1.0 * 0x8000) : 1.0 ;
sptr = ubuf.sbuf ;
bufferlen = SF_BUFFER_LEN / sizeof (short) ;
while (len > 0)
{ writecount = (len >= bufferlen) ? bufferlen : (int) len ;
for (k = 0 ; k < writecount ; k++)
sptr [k] = psf_lrint (normfact * ptr [total + k]) ;
count = nms_adpcm_write_block (psf, pnms, sptr, writecount) ;
total += count ;
len -= writecount ;
if (count != writecount)
break ;
} ;
return total ;
} /* nms_adpcm_write_d */
int
nms_adpcm_init (SF_PRIVATE *psf)
{ NMS_ADPCM_PRIVATE *pnms ;
if (psf->codec_data != NULL)
{ psf_log_printf (psf, "*** psf->codec_data is not NULL.\n") ;
return SFE_INTERNAL ;
} ;
psf->sf.seekable = SF_FALSE ;
if (psf->sf.channels != 1)
return SFE_NMS_ADPCM_NOT_MONO ;
if ((pnms = calloc (1, sizeof (NMS_ADPCM_PRIVATE))) == NULL)
return SFE_MALLOC_FAILED ;
psf->codec_data = (void*) pnms ;
pnms->block_curr = 0 ;
pnms->sample_curr = 0 ;
switch (SF_CODEC (psf->sf.format))
{ case SF_FORMAT_NMS_ADPCM_16 :
pnms->type = NMS16 ;
pnms->shortsperblock = NMS_BLOCK_SHORTS_16 ;
break ;
case SF_FORMAT_NMS_ADPCM_24 :
pnms->type = NMS24 ;
pnms->shortsperblock = NMS_BLOCK_SHORTS_24 ;
break ;
case SF_FORMAT_NMS_ADPCM_32 :
pnms->type = NMS32 ;
pnms->shortsperblock = NMS_BLOCK_SHORTS_32 ;
break ;
default : return SFE_UNIMPLEMENTED ;
} ;
nms_adpcm_codec_init (&pnms->state, pnms->type) ;
psf->filelength = psf_get_filelen (psf) ;
if (psf->filelength < psf->dataoffset)
psf->filelength = psf->dataoffset ;
psf->datalength = psf->filelength - psf->dataoffset ;
if (psf->dataend > 0)
psf->datalength -= psf->filelength - psf->dataend ;
if (psf->file.mode == SFM_READ)
{ psf->read_short = nms_adpcm_read_s ;
psf->read_int = nms_adpcm_read_i ;
psf->read_float = nms_adpcm_read_f ;
psf->read_double = nms_adpcm_read_d ;
}
else if (psf->file.mode == SFM_WRITE)
{ psf->write_short = nms_adpcm_write_s ;
psf->write_int = nms_adpcm_write_i ;
psf->write_float = nms_adpcm_write_f ;
psf->write_double = nms_adpcm_write_d ;
} ;
if (psf->datalength % (pnms->shortsperblock * sizeof (short)))
{ psf_log_printf (psf, "*** Odd psf->datalength (%D) should be a multiple of %d\n",
psf->datalength, pnms->shortsperblock * sizeof (short)) ;
pnms->blocks_total = (psf->datalength / (pnms->shortsperblock * sizeof (short))) + 1 ;
}
else
pnms->blocks_total = psf->datalength / (pnms->shortsperblock * sizeof (short)) ;
psf->sf.frames = (sf_count_t) pnms->blocks_total * NMS_SAMPLES_PER_BLOCK ;
psf->codec_close = nms_adpcm_close ;
psf->seek = nms_adpcm_seek ;
return 0 ;
} /* nms_adpcm_init */
static int
nms_adpcm_close (SF_PRIVATE *psf)
{ NMS_ADPCM_PRIVATE *pnms ;
pnms = (NMS_ADPCM_PRIVATE*) psf->codec_data ;
/*
** If a block has been partially assembled, write it out as the final
** block.
*/
if (psf->file.mode == SFM_WRITE)
{ if (pnms->sample_curr && pnms->sample_curr < NMS_SAMPLES_PER_BLOCK)
{ memset (pnms->samples + pnms->sample_curr, 0, (NMS_SAMPLES_PER_BLOCK - pnms->sample_curr) * sizeof (short)) ;
psf_nms_adpcm_encode_block (psf, pnms) ;
}
if (psf->write_header)
psf->write_header (psf, SF_FALSE) ;
}
return 0 ;
} /* nms_adpcm_close */
static sf_count_t
nms_adpcm_seek (SF_PRIVATE *psf, int mode, sf_count_t offset)
{ NMS_ADPCM_PRIVATE *pnms ;
pnms = (NMS_ADPCM_PRIVATE *) psf->codec_data ;
/*
** NMS ADPCM is symmetric, so transitioning from reading and writing is
** possible, but unimplemented, as it would require syncing partial blocks.
*/
if (mode != psf->file.mode)
{ psf->error = SFE_BAD_SEEK ;
return PSF_SEEK_ERROR ;
} ;
/*
** NMS ADPCM cannot be seek'ed, as codec state depends on previous samples,
** so only a seek to 0 is supported.
*/
if (offset != 0)
{ psf->error = SFE_BAD_SEEK ;
return PSF_SEEK_ERROR ;
} ;
if (psf_fseek (psf, psf->dataoffset, SEEK_SET) == PSF_SEEK_ERROR)
return PSF_SEEK_ERROR ;
nms_adpcm_codec_init (&pnms->state, pnms->type) ;
pnms->block_curr = 0 ;
pnms->sample_curr = 0 ;
return 0 ;
} /* nms_adpcm_seek */
|