File: sort.h

package info (click to toggle)
libsort-key-perl 1.33-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 348 kB
  • ctags: 604
  • sloc: perl: 493; ansic: 212; makefile: 2
file content (522 lines) | stat: -rw-r--r-- 17,611 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*    pp_sort.c
 *
 *    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
 *    2000, 2001, 2002, 2003, 2004, 2005, by Larry Wall and others
 *
 *    You may distribute under the terms of either the GNU General Public
 *    License or the Artistic License, as specified in the README file.
 *
 */

/*
 *   ...they shuffled back towards the rear of the line. 'No, not at the
 *   rear!'  the slave-driver shouted. 'Three files up. And stay there...
 */

/* This file contains pp ("push/pop") functions that
 * execute the opcodes that make up a perl program. A typical pp function
 * expects to find its arguments on the stack, and usually pushes its
 * results onto the stack, hence the 'pp' terminology. Each OP structure
 * contains a pointer to the relevant pp_foo() function.
 *
 * This particular file just contains pp_sort(), which is complex
 * enough to merit its own file! See the other pp*.c files for the rest of
 * the pp_ functions.
 */

#if defined(UNDER_CE)
/* looks like 'small' is reserved word for WINCE (or somesuch)*/
#define	small xsmall
#endif

#ifndef SMALLSORT
#define	SMALLSORT (200)
#endif

/*
 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
 *
 * The original code was written in conjunction with BSD Computer Software
 * Research Group at University of California, Berkeley.
 *
 * See also: "Optimistic Merge Sort" (SODA '92)
 *
 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
 *
 * The code can be distributed under the same terms as Perl itself.
 *
 */

/* Binary merge internal sort, with a few special mods
** for the special perl environment it now finds itself in.
**
** Things that were once options have been hotwired
** to values suitable for this use.  In particular, we'll always
** initialize looking for natural runs, we'll always produce stable
** output, and we'll always do Peter McIlroy's binary merge.
*/

/* Pointer types for arithmetic and storage and convenience casts */

#define	GPTP(P)	((SV **)(P))
#define GPPP(P) ((SV ***)(P))


/* byte offset from pointer P to (larger) pointer Q */
#define	BYTEOFF(P, Q) (((char *)(Q)) - ((char *)(P)))

#define PSIZE sizeof(SV *)

/* If PSIZE is power of 2, make PSHIFT that power, if that helps */

#ifdef	PSHIFT
#define	PNELEM(P, Q)	(BYTEOFF(P,Q) >> (PSHIFT))
#define	PNBYTE(N)	((N) << (PSHIFT))
#define	PINDEX(P, N)	(GPTP((char *)(P) + PNBYTE(N)))
#else
/* Leave optimization to compiler */
#define	PNELEM(P, Q)	(GPTP(Q) - GPTP(P))
#define	PNBYTE(N)	((N) * (PSIZE))
#define	PINDEX(P, N)	(GPTP(P) + (N))
#endif

/* Pointer into other corresponding to pointer into this */
#define	POTHER(P, THIS, OTHER) GPTP(((char *)(OTHER)) + BYTEOFF(THIS,P))

#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)


/* Runs are identified by a pointer in the auxilliary list.
** The pointer is at the start of the list,
** and it points to the start of the next list.
** NEXT is used as an lvalue, too.
*/

#define	NEXT(P)		(*GPPP(P))


/* PTHRESH is the minimum number of pairs with the same sense to justify
** checking for a run and extending it.  Note that PTHRESH counts PAIRS,
** not just elements, so PTHRESH == 8 means a run of 16.
*/

#define	PTHRESH (8)

/* RTHRESH is the number of elements in a run that must compare low
** to the low element from the opposing run before we justify
** doing a binary rampup instead of single stepping.
** In random input, N in a row low should only happen with
** probability 2^(1-N), so we can risk that we are dealing
** with orderly input without paying much when we aren't.
*/

#define RTHRESH (6)


/*
** Overview of algorithm and variables.
** The array of elements at list1 will be organized into runs of length 2,
** or runs of length >= 2 * PTHRESH.  We only try to form long runs when
** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
**
** Unless otherwise specified, pair pointers address the first of two elements.
**
** b and b+1 are a pair that compare with sense ``sense''.
** b is the ``bottom'' of adjacent pairs that might form a longer run.
**
** p2 parallels b in the list2 array, where runs are defined by
** a pointer chain.
**
** t represents the ``top'' of the adjacent pairs that might extend
** the run beginning at b.  Usually, t addresses a pair
** that compares with opposite sense from (b,b+1).
** However, it may also address a singleton element at the end of list1,
** or it may be equal to ``last'', the first element beyond list1.
**
** r addresses the Nth pair following b.  If this would be beyond t,
** we back it off to t.  Only when r is less than t do we consider the
** run long enough to consider checking.
**
** q addresses a pair such that the pairs at b through q already form a run.
** Often, q will equal b, indicating we only are sure of the pair itself.
** However, a search on the previous cycle may have revealed a longer run,
** so q may be greater than b.
**
** p is used to work back from a candidate r, trying to reach q,
** which would mean b through r would be a run.  If we discover such a run,
** we start q at r and try to push it further towards t.
** If b through r is NOT a run, we detect the wrong order at (p-1,p).
** In any event, after the check (if any), we have two main cases.
**
** 1) Short run.  b <= q < p <= r <= t.
**	b through q is a run (perhaps trivial)
**	q through p are uninteresting pairs
**	p through r is a run
**
** 2) Long run.  b < r <= q < t.
**	b through q is a run (of length >= 2 * PTHRESH)
**
** Note that degenerate cases are not only possible, but likely.
** For example, if the pair following b compares with opposite sense,
** then b == q < p == r == t.
*/


static IV
dynprep(pTHX_ SV **list1, SV **list2, size_t nmemb, SVCOMPARE_t cmp)
{
    I32 sense;
    register SV **b, **p, **q, **t, **p2;
    register SV *c, **last, **r;
    SV **savep;
    IV runs = 0;

    b = list1;
    last = PINDEX(b, nmemb);
    sense = (cmp(aTHX_ *b, *(b+1)) > 0);
    for (p2 = list2; b < last; ) {
	/* We just started, or just reversed sense.
	** Set t at end of pairs with the prevailing sense.
	*/
	for (p = b+2, t = p; ++p < last; t = ++p) {
	    if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
	}
	q = b;
	/* Having laid out the playing field, look for long runs */
	do {
	    p = r = b + (2 * PTHRESH);
	    if (r >= t) p = r = t;	/* too short to care about */
	    else {
		while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
		       ((p -= 2) > q));
		if (p <= q) {
		    /* b through r is a (long) run.
		    ** Extend it as far as possible.
		    */
		    p = q = r;
		    while (((p += 2) < t) &&
			   ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
		    r = p = q + 2;	/* no simple pairs, no after-run */
		}
	    }
	    if (q > b) {		/* run of greater than 2 at b */
		savep = p;
		p = q += 2;
		/* pick up singleton, if possible */
		if ((p == t) &&
		    ((t + 1) == last) &&
		    ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
		    savep = r = p = q = last;
		p2 = NEXT(p2) = p2 + (p - b); ++runs;
		if (sense) while (b < --p) {
		    c = *b;
		    *b++ = *p;
		    *p = c;
		}
		p = savep;
	    }
	    while (q < p) {		/* simple pairs */
		p2 = NEXT(p2) = p2 + 2; ++runs;
		if (sense) {
		    c = *q++;
		    *(q-1) = *q;
		    *q++ = c;
		} else q += 2;
	    }
	    if (((b = p) == t) && ((t+1) == last)) {
		NEXT(p2) = p2 + 1; ++runs;
		b++;
	    }
	    q = r;
	} while (b < t);
	sense = !sense;
    }
    return runs;
}


/* The original merge sort, in use since 5.7, was as fast as, or faster than,
 * qsort on many platforms, but slower than qsort, conspicuously so,
 * on others.  The most likely explanation was platform-specific
 * differences in cache sizes and relative speeds.
 *
 * The quicksort divide-and-conquer algorithm guarantees that, as the
 * problem is subdivided into smaller and smaller parts, the parts
 * fit into smaller (and faster) caches.  So it doesn't matter how
 * many levels of cache exist, quicksort will "find" them, and,
 * as long as smaller is faster, take advanatge of them.
 *
 * By contrast, consider how the original mergesort algorithm worked.
 * Suppose we have five runs (each typically of length 2 after dynprep).
 * 
 * pass               base                        aux
 *  0              1 2 3 4 5
 *  1                                           12 34 5
 *  2                1234 5
 *  3                                            12345
 *  4                 12345
 *
 * Adjacent pairs are merged in "grand sweeps" through the input.
 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
 * runs 3 and 4 are merged and the runs from run 5 have been copied.
 * The only cache that matters is one large enough to hold *all* the input.
 * On some platforms, this may be many times slower than smaller caches.
 *
 * The following pseudo-code uses the same basic merge algorithm,
 * but in a divide-and-conquer way.
 *
 * # merge $runs runs at offset $offset of list $list1 into $list2.
 * # all unmerged runs ($runs == 1) originate in list $base.
 * sub mgsort2 {
 *     my ($offset, $runs, $base, $list1, $list2) = @_;
 *
 *     if ($runs == 1) {
 *         if ($list1 is $base) copy run to $list2
 *         return offset of end of list (or copy)
 *     } else {
 *         $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
 *         mgsort2($off2, $runs/2, $base, $list2, $list1)
 *         merge the adjacent runs at $offset of $list1 into $list2
 *         return the offset of the end of the merged runs
 *     }
 * }
 * mgsort2(0, $runs, $base, $aux, $base);
 *
 * For our 5 runs, the tree of calls looks like 
 *
 *           5
 *      3        2
 *   2     1   1   1
 * 1   1
 *
 * 1   2   3   4   5
 *
 * and the corresponding activity looks like
 *
 * copy runs 1 and 2 from base to aux
 * merge runs 1 and 2 from aux to base
 * (run 3 is where it belongs, no copy needed)
 * merge runs 12 and 3 from base to aux
 * (runs 4 and 5 are where they belong, no copy needed)
 * merge runs 4 and 5 from base to aux
 * merge runs 123 and 45 from aux to base
 *
 * Note that we merge runs 1 and 2 immediately after copying them,
 * while they are still likely to be in fast cache.  Similarly,
 * run 3 is merged with run 12 while it still may be lingering in cache.
 * This implementation should therefore enjoy much of the cache-friendly
 * behavior that quicksort does.  In addition, it does less copying
 * than the original mergesort implementation (only runs 1 and 2 are copied)
 * and the "balancing" of merges is better (merged runs comprise more nearly
 * equal numbers of original runs).
 *
 * The actual cache-friendly implementation will use a pseudo-stack
 * to avoid recursion, and will unroll processing of runs of length 2,
 * but it is otherwise similar to the recursive implementation.
 */

typedef struct {
    IV	offset;		/* offset of 1st of 2 runs at this level */
    IV	runs;		/* how many runs must be combined into 1 */
} off_runs;		/* pseudo-stack element */

static void 
sortsv(pTHX_ SV **base, size_t nmemb, SVCOMPARE_t cmp)
{
    IV i, run, runs, offset;
    I32 sense, level;
    int iwhich;
    register SV **f1, **f2, **t, **b, **p, **tp2, **l1, **l2, **q;
    SV **aux, **list1, **list2;
    SV **p1;
    SV * small[SMALLSORT];
    SV **which[3];
    off_runs stack[60], *stackp;
    SVCOMPARE_t savecmp = 0;

    if (nmemb <= 1) return;			/* sorted trivially */

    if (nmemb <= SMALLSORT) aux = small;	/* use stack for aux array */
    else { New(799,aux,nmemb,SV *); }		/* allocate auxilliary array */
    level = 0;
    stackp = stack;
    stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
    stackp->offset = offset = 0;
    which[0] = which[2] = base;
    which[1] = aux;
    for (;;) {
	/* On levels where both runs have be constructed (stackp->runs == 0),
	 * merge them, and note the offset of their end, in case the offset
	 * is needed at the next level up.  Hop up a level, and,
	 * as long as stackp->runs is 0, keep merging.
	 */
	if ((runs = stackp->runs) == 0) {
	    iwhich = level & 1;
	    list1 = which[iwhich];		/* area where runs are now */
	    list2 = which[++iwhich];		/* area for merged runs */
	    do {
		offset = stackp->offset;
		f1 = p1 = list1 + offset;		/* start of first run */
		p = tp2 = list2 + offset;	/* where merged run will go */
		t = NEXT(p);			/* where first run ends */
		f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
		t = NEXT(t);			/* where second runs ends */
		l2 = POTHER(t, list2, list1);	/* ... on the other side */
		offset = PNELEM(list2, t);
		while (f1 < l1 && f2 < l2) {
		    /* If head 1 is larger than head 2, find ALL the elements
		    ** in list 2 strictly less than head1, write them all,
		    ** then head 1.  Then compare the new heads, and repeat,
		    ** until one or both lists are exhausted.
		    **
		    ** In all comparisons (after establishing
		    ** which head to merge) the item to merge
		    ** (at pointer q) is the first operand of
		    ** the comparison.  When we want to know
		    ** if ``q is strictly less than the other'',
		    ** we can't just do
		    **    cmp(q, other) < 0
		    ** because stability demands that we treat equality
		    ** as high when q comes from l2, and as low when
		    ** q was from l1.  So we ask the question by doing
		    **    cmp(q, other) <= sense
		    ** and make sense == 0 when equality should look low,
		    ** and -1 when equality should look high.
		    */


		    if (cmp(aTHX_ *f1, *f2) <= 0) {
			q = f2; b = f1; t = l1;
			sense = -1;
		    } else {
			q = f1; b = f2; t = l2;
			sense = 0;
		    }


		    /* ramp up
		    **
		    ** Leave t at something strictly
		    ** greater than q (or at the end of the list),
		    ** and b at something strictly less than q.
		    */
		    for (i = 1, run = 0 ;;) {
			if ((p = PINDEX(b, i)) >= t) {
			    /* off the end */
			    if (((p = PINDEX(t, -1)) > b) &&
				(cmp(aTHX_ *q, *p) <= sense))
				 t = p;
			    else b = p;
			    break;
			} else if (cmp(aTHX_ *q, *p) <= sense) {
			    t = p;
			    break;
			} else b = p;
			if (++run >= RTHRESH) i += i;
		    }


		    /* q is known to follow b and must be inserted before t.
		    ** Increment b, so the range of possibilities is [b,t).
		    ** Round binary split down, to favor early appearance.
		    ** Adjust b and t until q belongs just before t.
		    */

		    b++;
		    while (b < t) {
			p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
			if (cmp(aTHX_ *q, *p) <= sense) {
			    t = p;
			} else b = p + 1;
		    }


		    /* Copy all the strictly low elements */

		    if (q == f1) {
			FROMTOUPTO(f2, tp2, t);
			*tp2++ = *f1++;
		    } else {
			FROMTOUPTO(f1, tp2, t);
			*tp2++ = *f2++;
		    }
		}


		/* Run out remaining list */
		if (f1 == l1) {
		       if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
		} else              FROMTOUPTO(f1, tp2, l1);
		p1 = NEXT(p1) = POTHER(tp2, list2, list1);

		if (--level == 0) goto done;
		--stackp;
		t = list1; list1 = list2; list2 = t;	/* swap lists */
	    } while ((runs = stackp->runs) == 0);
	}


	stackp->runs = 0;		/* current run will finish level */
	/* While there are more than 2 runs remaining,
	 * turn them into exactly 2 runs (at the "other" level),
	 * each made up of approximately half the runs.
	 * Stack the second half for later processing,
	 * and set about producing the first half now.
	 */
	while (runs > 2) {
	    ++level;
	    ++stackp;
	    stackp->offset = offset;
	    runs -= stackp->runs = runs / 2;
	}
	/* We must construct a single run from 1 or 2 runs.
	 * All the original runs are in which[0] == base.
	 * The run we construct must end up in which[level&1].
	 */
	iwhich = level & 1;
	if (runs == 1) {
	    /* Constructing a single run from a single run.
	     * If it's where it belongs already, there's nothing to do.
	     * Otherwise, copy it to where it belongs.
	     * A run of 1 is either a singleton at level 0,
	     * or the second half of a split 3.  In neither event
	     * is it necessary to set offset.  It will be set by the merge
	     * that immediately follows.
	     */
	    if (iwhich) {	/* Belongs in aux, currently in base */
		f1 = b = PINDEX(base, offset);	/* where list starts */
		f2 = PINDEX(aux, offset);	/* where list goes */
		t = NEXT(f2);			/* where list will end */
		offset = PNELEM(aux, t);	/* offset thereof */
		t = PINDEX(base, offset);	/* where it currently ends */
		FROMTOUPTO(f1, f2, t);		/* copy */
		NEXT(b) = t;			/* set up parallel pointer */
	    } else if (level == 0) goto done;	/* single run at level 0 */
	} else {
	    /* Constructing a single run from two runs.
	     * The merge code at the top will do that.
	     * We need only make sure the two runs are in the "other" array,
	     * so they'll end up in the correct array after the merge.
	     */
	    ++level;
	    ++stackp;
	    stackp->offset = offset;
	    stackp->runs = 0;	/* take care of both runs, trigger merge */
	    if (!iwhich) {	/* Merged runs belong in aux, copy 1st */
		f1 = b = PINDEX(base, offset);	/* where first run starts */
		f2 = PINDEX(aux, offset);	/* where it will be copied */
		t = NEXT(f2);			/* where first run will end */
		offset = PNELEM(aux, t);	/* offset thereof */
		p = PINDEX(base, offset);	/* end of first run */
		t = NEXT(t);			/* where second run will end */
		t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
		FROMTOUPTO(f1, f2, t);		/* copy both runs */
		NEXT(b) = p;			/* paralled pointer for 1st */
		NEXT(p) = t;			/* ... and for second */
	    }
	}
    }
done:
    if (aux != small) Safefree(aux);	/* free iff allocated */
    return;
}